Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Hub ; 1(3): 1-9, 2016.
Article in English | MEDLINE | ID: mdl-31988890

ABSTRACT

At the annual prestigious International Symposium of the Fritz-Bender Foundation, Munich, 18-20 May, 2016, researchers, clinicians, and students discussed the state of the art and future perspectives of genomic medicine in cancer. Genomic medicine (also known as precision medicine/oncology) should help clinicians to provide a more precise diagnosis and therapy in oncology for individual patients. The meeting focused on next-generation sequencing methods, analytical computational analysis of big data, and data mining on the way to translational and evidence-based medicine. The meeting covered the social and ethical impact of genomic medicine as well as news and views on antibody targeting of intracellular proteins, on the architecture of intracellular proteins and their impact on carcinogenesis, and on the adaptation of tumor therapy in due consideration of tumor evolution. Subheadings like "Genetic Profiling of Patients and Risk Prediction," "Molecular Profiling of Tumors and Metastases," "Tumor-Host Microenvironment Interaction and Metabolism," and "Targeted Therapy" were subsumed under the main heading of "Personalized Cancer Care."

2.
J Pers Med ; 3(2): 70-81, 2013 Apr 29.
Article in English | MEDLINE | ID: mdl-25562519

ABSTRACT

The Oslo University Hospital (Norway), the K.G. Jebsen Centre for Breast Cancer Research (Norway), The Radiumhospital Foundation (Norway) and the Fritz-Bender-Foundation (Germany) designed under the conference chairmen (E. Mihich, K.S. Zänker, A.L. Borresen-Dale) and advisory committee (A. Borg, Z. Szallasi, O. Kallioniemi, H.P. Huber) a program at the cutting edge of "PERSONALIZED CANCER CARE: Risk prediction, early diagnosis, progression and therapy resistance." The conference was held in Oslo from September 7 to 9, 2012 and the science-based presentations concerned six scientific areas: (1) Genetic profiling of patients, prediction of risk, late side effects; (2) Molecular profiling of tumors and metastases; (3) Tumor-host microenvironment interaction and metabolism; (4) Targeted therapy; (5) Translation and (6) Informed consent, ethical challenges and communication. Two satellite workshops on (i) Ion Ampliseq-a novel tool for large scale mutation detection; and (ii) Multiplex RNA ISH and tissue homogenate assays for cancer biomarker validation were additionally organized. The report concludes that individual risk prediction in carcinogenesis and/or metastatogenesis based on polygenic profiling may be useful for intervention strategies for health care and therapy planning in the future. To detect distinct and overlapping DNA sequence alterations in tumor samples and adjacent normal tissues, including point mutations, small insertions or deletions, copy number changes and chromosomal rearrangements will eventually make it possible to design personalized management plans for individualized patients. However, large individualized datasets need a new approach in bio-information technology to reduce this enormous data dimensionally to simply working hypotheses about health and disease for each individual.

3.
Ultramicroscopy ; 111(11): 1625-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21963779

ABSTRACT

Microwave measurements combined with scanning probe microscopy is a novel tool to explore high-localized mechanical and electrical properties of biological species. Complex permittivities and permeabilities are detected through slight variations of an incident microwave signal. Here we report the high-frequency dependence of the electromagnetic dynamic characteristics in human monocytic leukemia cells (THP1) through local measurements by scanning microwave microscopy (SMM). The amplitude and phase images were shown to depend on the applied resonance frequency. While the amplitude yields information about the resistivity determined by the water and the ionic strength, the phase information reflects the dielectric losses arising from the fluid density.


Subject(s)
Electromagnetic Phenomena , Microscopy, Scanning Probe/methods , Neoplasms/pathology , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...