Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Int J Circumpolar Health ; 79(1): 1715698, 2020 12.
Article in English | MEDLINE | ID: mdl-32046614

ABSTRACT

Population growth, socio-cultural and economic changes as well as technological progress have an immediate impact on the environment and human health in particular. Our steadily rising needs of resources increase the pressure on the environment and narrow down untainted habitats for plants and wild animals. Balance and resilience of ecosystems are further threatened by climate change, as temperature and seasonal shifts increase the pressure for all species to find successful survival strategies. Arctic and subarctic regions are especially vulnerable to climate change, as thawing of permafrost significantly transforms soil structures, vegetation and habitats. With rising temperature, the risk of zoonotic diseases in the Republic of Sakha (Yakutia) has also increased. As vegetation periods prolong and habitats broaden, zoonotic pathogens and their vectors find more favourable living conditions. Moreover, permafrost degradation may expose historic burial grounds and allow for reviving the vectors of deadly infections from the past. To assess the current state of knowledge and emerging risks in the light of the "One Health" concept, a German-Russian Symposium took place on 13 August 2018 in Yakutsk, Russian Federation. This symposium report presents the main findings generated from presentations and discussions.


Subject(s)
Animals, Wild , Climate Change , Environmental Health/statistics & numerical data , Zoonoses/epidemiology , Animals , Arctic Regions/epidemiology , Congresses as Topic , Humans , Risk Factors , Russia/epidemiology
2.
Viruses ; 10(4)2018 03 29.
Article in English | MEDLINE | ID: mdl-29596346

ABSTRACT

In Germany, phage research and application can be traced back to the beginning of the 20th century. However, with the triumphal march of antibiotics around the world, the significance of bacteriophages faded in most countries, and respective research mainly focused on fundamental questions and niche applications. After a century, we pay tribute to the overuse of antibiotics that led to multidrug resistance and calls for new strategies to combat pathogenic microbes. Against this background, bacteriophages came into the spotlight of researchers and practitioners again resulting in a fast growing "phage community". In October 2017, part of this community met at the 1st German Phage Symposium to share their knowledge and experiences. The participants discussed open questions and challenges related to phage therapy and the application of phages in general. This report summarizes the presentations given, highlights the main points of the round table discussion and concludes with an outlook for the different aspects of phage application.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Animals , Biotechnology , Drug Resistance, Microbial , Evolution, Molecular , Gene Transfer, Horizontal , Germany , Host-Pathogen Interactions , Humans , Phage Therapy
4.
Mol Pharmacol ; 75(2): 407-14, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19029287

ABSTRACT

The L-type calcium channel (LTCC) isoforms Ca(v)1.2 and Ca(v)1.3 display similar 1,4-dihydropyridine (DHP) binding properties and are both expressed in mammalian brain. Recent work implicates Ca(v)1.3 channels as interesting drug targets, but no isoform-selective modulators exist. It is also unknown to what extent Ca(v)1.1 and Ca(v)1.4 contribute to L-type-specific DHP binding activity in brain. To address this question and to determine whether DHPs can discriminate between Ca(v)1.2 and Ca(v)1.3 binding pockets, we combined radioreceptor assays and quantitative polymerase chain reaction (qPCR). We bred double mutants (Ca(v)-DM) from mice expressing mutant Ca(v)1.2 channels [Ca(v)1.2DHP(-/-)] lacking high affinity for DHPs and from Ca(v)1.3 knockouts [Ca(v)1.3(-/-)]. (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) and Ca(v)-DM brains was reduced to 15.1 and 4.4% of wild type, respectively, indicating that Ca(v)1.3 accounts for 10.7% of brain LTCCs. qPCR revealed that Ca(v)1.1 and Ca(v)1.4 alpha(1) subunits comprised 0.08% of the LTCC transcripts in mouse whole brain, suggesting that they cannot account for the residual binding. Instead, this could be explained by low-affinity binding (127-fold K(d) increase) to the mutated Ca(v)1.2 channels. Inhibition of (+)-[(3)H]isradipine binding to Ca(v)1.2DHP(-/-) (predominantly Ca(v)1.3) and wild-type (predominantly Ca(v)1.2) brain membranes by unlabeled DHPs revealed a 3- to 4-fold selectivity of nitrendipine and nifedipine for the Ca(v)1.2 binding pocket, a finding further confirmed with heterologously expressed channels. This suggests that small differences in their binding pockets may allow development of isoform-selective modulators for LTCCs and that, because of their very low expression, Ca(v)1.1 and Ca(v)1.4 are unlikely to serve as drug targets to treat CNS diseases.


Subject(s)
Calcium Channels, L-Type/metabolism , Dihydropyridines/metabolism , Protein Isoforms/metabolism , Amino Acid Motifs/physiology , Animals , Brain/metabolism , Calcium Channels, L-Type/genetics , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Isoforms/genetics
5.
J Biol Chem ; 279(53): 55211-7, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15504730

ABSTRACT

Replacement of L-type Ca(2+) channel alpha(1) subunit residue Thr-1066 in segment IIIS5 by a tyrosine residue conserved in the corresponding positions of non-L-type Ca(2+) channels eliminates high dihydropyridine sensitivity through a steric mechanism. To determine the effects of this mutation on phenylalkylamine interaction, we exploited the availability of Ca(v)1.2DHP(-/-) mice containing the T1066Y mutation. In contrast to dihydropyridines, increased protein-dependent binding of the phenylalkylamine (-)-[(3)H]devapamil occurred to Ca(v)1.2DHP(-/-) mouse brain microsomes. This effect could be attributed to an at least 2-fold increase in affinity as determined by saturation analysis and binding inhibition experiments. The latter also revealed a higher affinity for (-)-verapamil but not for (-)-gallopamil. The mutation caused a pronounced slowing of (-)-[(3)H]devapamil dissociation, indicating a stabilization of the drug-channel complex. The increased affinity of mutant channels was also evident in functional studies after heterologous expression of wild type and T1066Y channels in Xenopus laevis oocytes. 100 mum (-)-verapamil inhibited a significantly larger fraction of Ba(2+) inward current through mutant than through WT channels. Our results provide evidence that phenylalkylamines also interact with the IIIS5 helix and that the geometry of the IIIS5 helix affects the access and/or binding of different chemical classes of Ca(2+) channel blockers to their overlapping binding domains. Mutation of Thr-1066 to a non-L-type tyrosine residue can be exploited to differentially affect phenylalkylamine and dihydropyridine binding to L-type Ca(2+) channels.


Subject(s)
Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Calcium Channels/chemistry , Calcium/chemistry , Carrier Proteins/genetics , Dihydropyridines/chemistry , Mutation , Steroid Isomerases/genetics , Verapamil/analogs & derivatives , Animals , Brain/metabolism , Cell Membrane/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Electrophysiology , Gallopamil/pharmacology , Homozygote , In Situ Hybridization , Isradipine/pharmacology , Kinetics , Mice , Mice, Transgenic , Microsomes/metabolism , Models, Biological , Oocytes/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Complementary/metabolism , Recombinant Proteins/chemistry , Tyrosine/chemistry , Verapamil/pharmacology , Xenopus laevis
6.
J Clin Invest ; 113(10): 1430-9, 2004 May.
Article in English | MEDLINE | ID: mdl-15146240

ABSTRACT

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Subject(s)
Affect/physiology , Calcium Channels, L-Type/physiology , Cardiovascular Physiological Phenomena , Islets of Langerhans/physiology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Affect/drug effects , Animals , Calcium Channels, L-Type/deficiency , Calcium Channels, L-Type/genetics , Dihydropyridines/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/physiology
7.
Invest Ophthalmol Vis Sci ; 44(11): 5006-15, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14578428

ABSTRACT

PURPOSE: Human Usher syndrome is the most common form of combined deafness and blindness. Usher type I (USH1), the most severe form, is characterized by profound congenital deafness, constant vestibular dysfunction, and prepubertal onset retinitis pigmentosa. Previous studies have shown that the USH1-proteins myosin VIIa, harmonin, and cadherin 23 interact and form a functional network during hair cell differentiation in the inner ear. The purpose of the present study was to analyze the molecular and cellular functions of these USH1 proteins in the mammalian retina. METHODS: Antibodies to USH1 proteins were generated and used in Western blot analysis of subcellular photoreceptor fractions and immunofluorescence and electron microscopy of the retina. RESULTS: Splice variants of harmonin were differentially expressed in the photoreceptor cell compartments. Whereas harmonin b isoforms were restricted to the light-sensitive outer segment, the harmonin a and c isoforms were more ubiquitously distributed in the photoreceptors. At the synaptic terminal of photoreceptor cells, harmonin a and c colocalized with myosin VIIa and cadherin 23. CONCLUSIONS: USH1 molecules can assemble to a supramolecular complex at photoreceptor synapses. Such a complex may contribute to the cortical cytoskeletal matrices of the pre- and postsynaptic regions, which are thought to play a fundamental role in the organization of synaptic junctions. Dysfunction of any of the USH1 complex partners may lead to synaptic dysfunction causing retinitis pigmentosa, the clinical phenotype in the retina of patients with USH1. Furthermore, in photoreceptor outer segments, harmonin may also contribute to the clustering of outer segment proteins into supramolecular complexes.


Subject(s)
Cadherins/metabolism , Carrier Proteins/metabolism , Myosins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Animals , Blotting, Western , Cell Cycle Proteins , Cytoskeletal Proteins , Dyneins , Fluorescent Antibody Technique, Indirect , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Microscopy, Immunoelectron , Myosin VIIa , Photoreceptor Cells, Vertebrate/ultrastructure , Protein Isoforms , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Subcellular Fractions , Synaptophysin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...