Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Clin Endocrinol Metab ; 103(12): 4617-4627, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30124873

ABSTRACT

Context: Inactivating mutations within the AR gene are present in only ~40% of individuals with clinically and hormonally diagnosed androgen insensitivity syndrome (AIS). Previous studies revealed the existence of an AR gene mutation-negative group of patients with AIS who have compromised androgen receptor (AR) function (AIS type II). Objective: To investigate whether AIS type II can be due to epigenetic repression of AR transcription. Design: Quantification of AR mRNA and AR proximal promoter CpG methylation levels in genital skin-derived fibroblasts (GFs) derived from patients with AIS type II and control individuals. Setting: University hospital endocrine research laboratory. Patients: GFs from control individuals (n = 11) and patients with AIS type II (n = 14). Main Outcome Measure(s): Measurement of AR mRNA and AR promoter CpG methylation as well as activity of AR proximal promoter in vitro. Results: Fifty-seven percent of individuals with AIS type II (n = 8) showed a reduced AR mRNA expression in their GFs. A significant inverse correlation was shown between AR mRNA abundance and methylation at two consecutive CpGs within the proximal AR promoter. Methylation of a 158-bp-long region containing these CpGs was sufficient to severely reduce reporter gene expression. This region was bound by the runt related transcription factor 1 (RUNX1). Ectopic expression of RUNX1 in HEK293T cells was able to inhibit reporter gene expression through this region. Conclusions: Aberrant CpGs methylation within the proximal AR promoter plays an important role in the control of AR gene expression and may result in AIS type II. We suggest that transcriptional modifiers, such as RUNX1, could play roles therein offering new perspectives for understanding androgen-mediated endocrine diseases.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , DNA Methylation , Epigenetic Repression , Receptors, Androgen/genetics , Adolescent , Biopsy , Cells, Cultured , Child , Child, Preschool , Core Binding Factor Alpha 2 Subunit/metabolism , CpG Islands/genetics , Fibroblasts/metabolism , Genitalia, Male , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Mutation , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism , Receptors, Androgen/metabolism , Skin/cytology , Skin/metabolism , Skin/pathology
2.
Nature ; 555(7695): 256-259, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29489750

ABSTRACT

The TGFß pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFß signalling could have far-reaching implications in many other cell types and in diseases such as cancer.


Subject(s)
Adenosine/analogs & derivatives , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism , RNA, Messenger/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Activins/metabolism , Adenosine/metabolism , Animals , Cell Cycle Proteins , Epigenesis, Genetic , Humans , Methylation , Methyltransferases/chemistry , Methyltransferases/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nanog Homeobox Protein/metabolism , Nodal Protein/metabolism , Nuclear Proteins/metabolism , Pluripotent Stem Cells/cytology , Protein Binding , RNA Splicing Factors , RNA, Messenger/chemistry , RNA, Messenger/genetics , Signal Transduction , Transcriptome
3.
Nat Commun ; 8: 14418, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195176

ABSTRACT

Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition.


Subject(s)
Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Alleles , CRISPR-Cas Systems , Cell Line, Tumor , Colorectal Neoplasms/metabolism , DNA Methylation , DNA-Binding Proteins , Doublecortin-Like Kinases , Epigenesis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , MutL Protein Homolog 1/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proteome , Proteomics , Transcription Factors
4.
Cell Rep ; 17(8): 2087-2100, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851970

ABSTRACT

The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.


Subject(s)
Apoptosis/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis/genetics , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Translocation, Genetic , Acetylation , Base Sequence , Cell Line, Tumor , Cell Lineage/genetics , Cell Survival/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Gene Knockdown Techniques , Genome, Human , Histone Deacetylases/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Oncogenes , Promoter Regions, Genetic , Protein Binding/genetics , Transcriptional Regulator ERG/metabolism
5.
Sci Rep ; 6: 22675, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26947912

ABSTRACT

Immuno-PCR combines specific antibody-based protein detection with the sensitivity of PCR-based quantification through the use of antibody-DNA conjugates. The production of such conjugates depends on the availability of quick and efficient conjugation strategies for the two biomolecules. Here, we present an approach to produce cleavable antibody-DNA conjugates, employing the fast kinetics of the inverse electron-demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO). Our strategy consists of three steps. First, antibodies are functionalized with chemically cleavable NHS-s-s-tetrazine. Subsequently, double-stranded DNA is functionalized with TCO by enzymatic addition of N3-dATP and coupling to trans-Cyclooctene-PEG12-Dibenzocyclooctyne (TCO-PEG12-DBCO). Finally, conjugates are quickly and efficiently obtained by mixing the functionalized antibodies and dsDNA at low molar ratios of 1:2. In addition, introduction of a chemically cleavable disulphide linker facilitates release and sensitive detection of the dsDNA after immuno-staining. We show specific and sensitive protein detection in immuno-PCR for human epidermal stem cell markers, ITGA6 and ITGB1, and the differentiation marker Transglutaminase 1 (TGM1). We anticipate that the production of chemically cleavable antibody-DNA conjugates will provide a solid basis for the development of multiplexed immuno-PCR experiments and immuno-sequencing methodologies.


Subject(s)
Antibodies/metabolism , DNA/metabolism , Polymerase Chain Reaction/methods , Proteins/analysis , Antibodies/chemistry , DNA/genetics , Humans , Sensitivity and Specificity
6.
Cell ; 163(3): 712-23, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26496610

ABSTRACT

The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.


Subject(s)
Protein Interaction Mapping , Proteomics/methods , Cell Line , Chromosomes, Artificial, Bacterial/genetics , Humans
7.
Genes Dev ; 29(7): 702-17, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25805847

ABSTRACT

Stem cells can self-renew and differentiate into multiple cell types. These characteristics are maintained by the combination of specific signaling pathways and transcription factors that cooperate to establish a unique epigenetic state. Despite the broad interest of these mechanisms, the precise molecular controls by which extracellular signals organize epigenetic marks to confer multipotency remain to be uncovered. Here, we use human embryonic stem cells (hESCs) to show that the Activin-SMAD2/3 signaling pathway cooperates with the core pluripotency factor NANOG to recruit the DPY30-COMPASS histone modifiers onto key developmental genes. Functional studies demonstrate the importance of these interactions for correct histone 3 Lys4 trimethylation and also self-renewal and differentiation. Finally, genetic studies in mice show that Dpy30 is also necessary to maintain pluripotency in the pregastrulation embryo, thereby confirming the existence of similar regulations in vivo during early embryonic development. Our results reveal the mechanisms by which extracellular factors coordinate chromatin status and cell fate decisions in hESCs.


Subject(s)
Activins/metabolism , Cell Differentiation/genetics , Chromatin/genetics , Histones/genetics , Homeodomain Proteins/metabolism , Nodal Protein/metabolism , Signal Transduction , Animals , Cells, Cultured , Chromatin/metabolism , Embryo, Mammalian , Embryonic Stem Cells , Epigenesis, Genetic/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Nanog Homeobox Protein , Smad2 Protein/metabolism , Smad3 Protein/metabolism
8.
J Proteome Res ; 14(2): 1315-29, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25546135

ABSTRACT

Interactions between transcription factors and genomic DNA, and in particular their impact on disease and cell fate, have been extensively studied on a global level using techniques based on next-generation sequencing. These approaches, however, do not allow an unbiased study of protein complexes that bind to certain DNA sequences. DNA pulldowns from crude lysates combined with quantitative mass spectrometry were recently introduced to close this gap. Established protocols, however, are restricted to cell lines because they are based on metabolic labeling or require large amounts of material. We introduce a high-throughput-compatible DNA pulldown that combines on-bead digestion with direct dimethyl labeling or label-free protein quantification. We demonstrate that our method can efficiently identify transcription factors binding to their consensus DNA motifs in extracts from primary foreskin fibroblasts and peripheral blood mononuclear cells (PBMCs) freshly isolated from human donors. Nuclear proteomes with absolute quantification of nearly 7000 proteins in K562 cells and PBMCs clearly link differential interactions to differences in protein abundance, hence stressing the importance of selecting relevant cell extracts for any interaction in question. As shown for rs6904029, a SNP highly associated with chronic lymphocytic leukemia, our approach can provide invaluable functional data, for example, through integration with GWAS.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Proteomics , Adolescent , Cell Line , DNA/blood , DNA-Binding Proteins/blood , Humans
9.
Cell Rep ; 8(4): 983-90, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25131200

ABSTRACT

A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes a Mendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ∼20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences in GREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in Apc(Min) mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors.


Subject(s)
Colonic Neoplasms/genetics , Homeodomain Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Animals , Base Sequence , CDX2 Transcription Factor , Cell Line, Tumor , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Mice, Transgenic , Organ Specificity , Polymorphism, Single Nucleotide , Risk
10.
PLoS One ; 9(6): e99603, 2014.
Article in English | MEDLINE | ID: mdl-24927503

ABSTRACT

MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼ 400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA Methylation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , RNA Polymerase II/metabolism , Binding Sites , CpG Islands , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Molecular Sequence Data , Promoter Regions, Genetic , Sequence Analysis, RNA
11.
Hum Genet ; 133(6): 689-700, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24135908

ABSTRACT

Genome-wide association studies (GWAS) revealed genomic risk loci that potentially have an impact on disease and phenotypic traits. This extensive resource holds great promise in providing novel directions for personalized medicine, including disease risk prediction, prevention and targeted medication. One of the major challenges that researchers face on the path between the initial identification of an association and precision treatment of patients is the comprehension of the biological mechanisms that underlie these associations. Currently, the focus to solve these questions lies on the integrative analysis of system-wide data on global genome variation, gene expression, transcription factor binding, epigenetic profiles and chromatin conformation. The generation of this data mainly relies on next-generation sequencing. However, due to multiple recent developments, mass spectrometry-based proteomics now offers additional, by the GWAS field so far hardly recognized possibilities for the identification of functional genome variants and, in particular, for the identification and characterization of (differentially) bound protein complexes as well as physiological target genes. In this review, we introduce these proteomics advances and suggest how they might be integrated in post-GWAS workflows. We argue that the combination of highly complementary techniques is powerful and can provide an unbiased, detailed picture of GWAS loci and their mechanistic involvement in disease.


Subject(s)
Genome, Human , Genomics/methods , Precision Medicine/methods , Proteome/genetics , Chromatin/chemistry , Chromatin/metabolism , Epigenesis, Genetic , Genetic Loci , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Genomics/instrumentation , High-Throughput Nucleotide Sequencing , Humans , Proteome/metabolism , Tandem Mass Spectrometry
12.
Nat Methods ; 10(8): 730-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23921808

ABSTRACT

Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Proteins/analysis , Proteomics/methods , Databases, Factual , Humans
13.
Cell Stem Cell ; 13(3): 360-9, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23850244

ABSTRACT

The use of two kinase inhibitors (2i) enables derivation of mouse embryonic stem cells (ESCs) in the pluripotent ground state. Using whole-genome bisulfite sequencing (WGBS), we show that male 2i ESCs are globally hypomethylated compared to conventional ESCs maintained in serum. In serum, female ESCs are hypomethyated similarly to male ESCs in 2i, and DNA methylation is further reduced in 2i. Regions with elevated DNA methylation in 2i strongly correlate with the presence of H3K9me3 on endogenous retroviruses (ERVs) and imprinted loci. The methylome of male ESCs in serum parallels postimplantation blastocyst cells, while 2i stalls ESCs in a hypomethylated, ICM-like state. WGBS analysis during adaptation of 2i ESCs to serum suggests that deposition of DNA methylation is largely random, while loss of DNA methylation during reversion to 2i occurs passively, initiating at TET1 binding sites. Together, our analysis provides insight into DNA methylation dynamics in cultured ESCs paralleling early developmental processes.


Subject(s)
Blastocyst/physiology , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/physiology , Histone Demethylases/metabolism , Pluripotent Stem Cells/physiology , Proto-Oncogene Proteins/metabolism , Animals , Cells, Cultured , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Embryonic Stem Cells/drug effects , Female , Fetal Development , Genome/genetics , Histones/metabolism , Leukemia Inhibitory Factor/metabolism , Male , Methylation , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Sequence Analysis, DNA , Sulfites/chemistry
14.
Dev Cell ; 22(6): 1321-9, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22698286

ABSTRACT

Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive. In one exception, vertebrate BUBR1-defined by the KEN box-preserved the kinase domain but allowed nonconserved degeneration of catalytic motifs. Although BUBR1 evolved to a typical pseudokinase in some vertebrates, it retained the catalytic triad in humans. However, we show that putative catalysis by human BUBR1 is dispensable for error-free chromosome segregation. Instead, residues that interact with ATP in conventional kinases are essential for conformational stability in BUBR1. We propose that parallel evolution of BUBR1 orthologs rendered its kinase function dispensable in vertebrates, producing an unusual, triad-containing pseudokinase.


Subject(s)
M Phase Cell Cycle Checkpoints , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biological Evolution , Chromosome Segregation , Gene Duplication , Humans , Lizards , Molecular Sequence Data , Mutation , Protein Conformation , Protein Serine-Threonine Kinases/genetics , Sequence Alignment , Zebrafish Proteins/genetics
15.
Mol Cell Proteomics ; 10(11): M111.010629, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21836163

ABSTRACT

Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org.


Subject(s)
Computer Simulation , Models, Molecular , Protein Interaction Mapping/methods , Algorithms , Animals , Bayes Theorem , HeLa Cells , Humans , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , ROC Curve , Recombinant Proteins/metabolism , Statistics, Nonparametric
16.
Nat Cell Biol ; 13(7): 809-18, 2011 Jun 05.
Article in English | MEDLINE | ID: mdl-21642980

ABSTRACT

TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.


Subject(s)
Colorectal Neoplasms/metabolism , RNA Interference , Ribonucleoproteins, Small Nucleolar/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , HCT116 Cells , High-Throughput Screening Assays , Humans , Microscopy, Fluorescence , Microscopy, Video , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins , SMN Complex Proteins/genetics , SMN Complex Proteins/metabolism , Signal Transduction , Time Factors , Transfection , Tumor Suppressor Protein p53/genetics
17.
PLoS One ; 6(5): e19470, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21589869

ABSTRACT

For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21--pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.


Subject(s)
Embryonic Stem Cells/cytology , Nuclear Proteins/physiology , Phosphoproteins/physiology , Pluripotent Stem Cells/cytology , Transcription Factors/physiology , Animals , Binding Sites , Cell Cycle Proteins/physiology , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/physiology , DNA-Binding Proteins , Gene Expression Profiling , Homeodomain Proteins/physiology , Kruppel-Like Factor 4 , Mice , Nanog Homeobox Protein , Cohesins
19.
Methods ; 53(4): 453-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21184827

ABSTRACT

Large-scale proteomic screens are increasingly employed for placing genes into specific pathways. Therefore generic methods providing a physiological context for protein-protein interaction studies are of great interest. In recent years many protein-protein interactions have been determined by affinity purification followed by mass spectrometry (AP-MS). Among many different AP-MS approaches, the recently developed Quantitative BAC InteraCtomics (QUBIC) approach is particularly attractive as it uses tagged, full-length baits that are expressed under endogenous control. For QUBIC large cell line collections expressing tagged proteins from BAC transgenes or gene trap loci have been developed and are freely available. Here we describe detailed workflows on how to obtain specific protein binding partners with high confidence under physiological conditions. The methods are based on fast, streamlined and generic purification procedures followed by single run liquid chromatography-mass spectrometric analysis. Quantification is achieved either by the stable isotope labeling of amino acids in cell culture (SILAC) method or by a 'label-free' procedure. In either case data analysis is performed by using the freely available MaxQuant environment. The QUBIC approach enables biologists with access to high resolution mass spectrometry to perform small and large-scale protein interactome mappings.


Subject(s)
Multiprotein Complexes/metabolism , Protein Interaction Domains and Motifs , Proteomics/methods , Software , Animals , Cells, Cultured , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation/instrumentation , Immunoprecipitation/methods , Protein Binding , Recombinant Fusion Proteins/metabolism , Tandem Mass Spectrometry/methods
20.
J Cell Biol ; 189(4): 739-54, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20479470

ABSTRACT

Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC-green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genomics/methods , Protein Interaction Mapping/methods , Proteomics/methods , Transgenes , Antigens/genetics , Antigens/metabolism , Fluorescent Antibody Technique , Humans , Models, Biological , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...