Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096289

ABSTRACT

SARS-CoV-2 and HCoV-OC43 belong to the same ß genus of the Coronaviridae family. SARS-CoV-2 was responsible for the recent COVID-19 pandemic, and HCoV-OC43 is the etiological agent of mild upper respiratory tract infections. SARS-COV-2 and HCoV-OC43 co-infections were found in children with respiratory symptoms during the COVID-19 pandemic. The two ß-coronaviruses share a high degree of homology between the 3CLpro active sites, so much so that the safer HCoV-OC43 has been suggested as a tool for the identification of new anti-SARS-COV-2 agents. Compounds 5 and 24 inhibited effectively both Wuhan and British SARS-CoV-2 patient isolates in Vero E6 cells and the HCoV-OC43 in MRC-5 cells at low micromolar concentrations. The inhibition was apparently exerted via targeting the 3CLpro active sites of both viruses. Compounds 5 and 24 at 100 µM inhibited the SARS-CoV-2 3CLpro activity of 61.78 and 67.30%, respectively. These findings highlight 5 and 24 as lead compounds of a novel class of antiviral agents with the potential to treat SARS-COV-2 and HCoV-OC43 infections.

2.
Virus Genes ; 58(3): 188-202, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35347588

ABSTRACT

Chikungunya virus (CHIKV), a (re)emerging arbovirus, is the causative agent of chikungunya fever. To date, no approved vaccine or specific antiviral therapy are available. CHIKV has repeatedly been responsible for serious economic and public health impacts in countries where CHIKV epidemics occurred. Antiviral tests in vitro are generally performed in Vero-B4 cells, a well characterised cell line derived from the kidney of an African green monkey. In this work we characterised a CHIKV patient isolate from Brazil (CHIKVBrazil) with regard to cell affinity, infectivity, propagation and cell damage and compared it with a high-passage lab strain (CHIKVRoss). Infecting various cell lines (Vero-B4, A549, Huh-7, DBTRG, U251, and U138) with both virus strains, we found distinct differences between the two viruses. CHIKVBrazil does not cause cytopathic effects (CPE) in the human hepatocarcinoma cell line Huh-7. Neither CHIKVBrazil nor CHIKVRoss caused CPE on A549 human lung epithelial cells. The human astrocyte derived glioblastoma cell lines U138 and U251 were found to be effective models for lytic infection with both virus strains and we discuss their predictive potential for neurogenic CHIKV disease. We also detected significant differences in antiviral efficacies regarding the two CHIKV strains. Generally, the antivirals ribavirin, hydroxychloroquine (HCQ) and T-1105 seem to work better against CHIKVBrazil in glioblastoma cells than in Vero-B4. Finally, full genome analyses of the CHIKV isolates were done in order to determine their lineage and possibly explain differences in tissue range and antiviral compound efficacies.


Subject(s)
Chikungunya Fever , Chikungunya virus , Glioblastoma , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brazil , Cell Line , Chikungunya virus/genetics , Chlorocebus aethiops , Glioblastoma/genetics , Host Specificity , Humans , Virus Replication
3.
Virus Genes ; 57(2): 133-150, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33590406

ABSTRACT

Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.


Subject(s)
Antiviral Agents/therapeutic use , Chikungunya Fever/prevention & control , Pre-Exposure Prophylaxis , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/physiology , Drug Development , Humans , Viral Vaccines
4.
Front Public Health ; 8: 618624, 2020.
Article in English | MEDLINE | ID: mdl-33384981

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dermatologic Agents , Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Dermatologic Agents/therapeutic use , Humans
5.
BMC Biol ; 7: 76, 2009 Nov 13.
Article in English | MEDLINE | ID: mdl-19912622

ABSTRACT

BACKGROUND: The signal recognition particle (SRP) receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs) to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR) is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRbeta subunit is an integral membrane protein, which tethers the SRP-interacting SRalpha subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRbeta subunit and consists of only the SRalpha homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting. RESULTS: In the current study we have determined the contribution of soluble FtsY to co-translational targeting in vitro and have re-analysed the localization of FtsY in vivo by fluorescence microscopy. Our data show that FtsY can bind to SRP-ribosome nascent chains (RNCs) in the absence of membranes. However, these soluble FtsY-SRP-RNC complexes are not efficiently targeted to the membrane. In contrast, we observed effective targeting of SRP-RNCs to membrane-bond FtsY. These data show that soluble FtsY does not contribute significantly to cotranslational targeting in E. coli. In agreement with this observation, our in vivo analyses of FtsY localization in bacterial cells by fluorescence microscopy revealed that the vast majority of FtsY was localized to the inner membrane and that soluble FtsY constituted only a negligible species in vivo. CONCLUSION: The exact function of the SRP receptor (SR) in bacteria has so far been enigmatic. Our data show that the bacterial SR is almost exclusively membrane-bound in vivo, indicating that the presence of a soluble SR is probably an artefact of cell fractionation. Thus, co-translational targeting in bacteria does not involve the formation of a soluble SR-signal recognition particle (SRP)-ribosome nascent chain (RNC) intermediate but requires membrane contact of FtsY for efficient SRP-RNC recruitment.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Intracellular Membranes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Peptide/metabolism , Signal Recognition Particle/metabolism , Endoplasmic Reticulum/metabolism , Guanosine Triphosphate/metabolism , In Vitro Techniques , Microscopy, Fluorescence/methods , Protein Binding , Protein Sorting Signals , Protein Transport , Ribosomes/metabolism , SEC Translocation Channels
SELECTION OF CITATIONS
SEARCH DETAIL