Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Eur J Pharm Biopharm ; : 114507, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303952

ABSTRACT

Increasing resistance to antiviral drugs approved for the treatment of influenza urges the development of novel compounds. Ideally, this should be complemented by a careful consideration of the administration route. 6'siallyllactosamine-functionalized ß-cyclodextrin (CD-6'SLN) is a novel entry inhibitor that acts as a mimic of the primary attachment receptor of influenza, sialic acid. In this study, we aimed to develop a dry powder formulation of CD-6'SLN to assess its in vivo antiviral activity after administration via the pulmonary route. By means of spray drying the compound together with trileucine, a dispersion enhancer, we created a powder that retained the antiviral effect of the drug, remained stable under elevated temperature conditions and performed well in a dry powder inhaler. To test the efficacy of the dry powder drug against influenza infection in vivo, infected mice were treated with CD-6'SLN using an aerosol generator that allowed for the controlled administration of powder formulations to the lungs of mice. CD-6'SLN was effective in mitigating the course of the disease compared to the control groups, reflected by lower disease activity scores and by the prevention of virus-induced IL-6 production. Our data show that CD-6'SLN can be formulated as a stable dry powder that is suitable for use in a dry powder inhaler and is effective when administered via the pulmonary route to influenza-infected mice.

2.
Virology ; 598: 110194, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096774

ABSTRACT

RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.


Subject(s)
Antibodies, Viral , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Vaccines, Virus-Like Particle , Viral Fusion Proteins , Viral Matrix Proteins , Animals , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/administration & dosage , Female , Viral Matrix Proteins/immunology , Viral Matrix Proteins/administration & dosage , Viral Matrix Proteins/genetics , Immunity, Mucosal , Immunoglobulin G/blood , Immunoglobulin G/immunology , Respiratory Syncytial Virus, Human/immunology , Lung/virology , Lung/immunology , Glycoproteins/immunology , Glycoproteins/administration & dosage , Administration, Mucosal , Respiratory Syncytial Viruses/immunology , T-Lymphocytes/immunology
3.
Nat Commun ; 15(1): 4224, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762522

ABSTRACT

Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, different BA.2-descendent lineages have become dominant, such as XBB.1.5, JN.1, or EG.5.1. Here, we report post-hoc analyses of data from the SWITCH-ON study, assessing how different COVID-19 priming regimens affect the immunogenicity of bivalent booster vaccinations and breakthrough infections (NCT05471440). BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, our data further support the current use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Male , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination
4.
Biomater Sci ; 11(20): 6790-6800, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37622228

ABSTRACT

Dissolving microneedle arrays (dMNAs) can be used to deliver vaccines via the intradermal route. Fabrication of dMNAs using centrifugation is the most common preparation method of dMNAs, but it results in a substantial loss of antigens. In order to solve the issue of antigen waste, we engineered an automatic dispensing system for dMNA preparation. Here, we report on the fabrication of influenza whole inactivated virus (WIV) vaccine-loaded dMNAs (WIV dMNAs) by using the automatic dispensing system. Prior to the dispensing process, polydimethylsiloxane (PDMS) moulds were treated with oxygen plasma to increase surface hydrophilicity. WIV dMNAs were prepared with 1% (w/v) trehalose and pullulan (50 : 50 weight ratio). During the dispensing process, reduced pressure was applied to the PDMS mould via a vacuum chamber to make microneedle cavities airless. After producing dMNAs, WIV was quantified and 1.9 µg of WIV was loaded per dMNA, of which 1.3 µg was in the microneedle tips. Compared to the centrifugation method, this automatic dispensing system resulted in a 95% reduction of antigen waste. A hemagglutination assay confirmed that WIV dMNA maintained the stability of the antigen for at least four weeks of storage, even at room temperature or at 37 °C. The WIV dMNAs displayed 100% penetration efficiency in human skin, and 83% of the microneedle volume was dissolved in the skin within 10 minutes. In a vaccination study, mice immunised with WIV dMNAs showed similar IgG levels to those that received WIV intramuscularly. In conclusion, using the automatic dispensing system for dMNA production strongly reduced antigen waste and yielded dMNAs with excellent physical, mechanical, and immunological properties.

5.
Nat Rev Rheumatol ; 19(9): 560-575, 2023 09.
Article in English | MEDLINE | ID: mdl-37438402

ABSTRACT

Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.


Subject(s)
Antirheumatic Agents , COVID-19 , Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antirheumatic Agents/therapeutic use , Vaccines/therapeutic use , Azathioprine , Vaccination
6.
Pharmaceutics ; 15(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37514034

ABSTRACT

A challenge in the development of dry powder formulations for inhalation is the poor reproducibility of their administration to small laboratory animals. The currently used devices for the pulmonary administration of dry powder formulations to small rodents often function sub-optimally as they use the same puff of air for both powder dispersion and aerosol delivery. As a result, either the air volume and flow rate are too low for complete powder deagglomeration or they are too high for effective aerosol delivery to the lungs of the animal. Therefore, novel and better devices are desired. We here present an aerosol generator designed to administer a pre-generated aerosol to the lungs of mice. By mapping the complex relationship between the airflow rate, delivery time and emitted dose, we were able to control the amount of powder being delivered from the aerosol generator. The emitted aerosol had a size range favorable for lung deposition and could be measured reproducibly. Nevertheless, in vivo fluorescent imaging still revealed considerable differences between the mice in terms of the dose deposited and the distribution of powder over the lungs, suggesting that a certain biological variation in lung deposition is inevitable.

7.
Lancet Infect Dis ; 23(8): 901-913, 2023 08.
Article in English | MEDLINE | ID: mdl-37088096

ABSTRACT

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).


Subject(s)
Ad26COVS1 , COVID-19 , Adult , Humans , Female , Male , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Netherlands , SARS-CoV-2/genetics , Health Personnel , Antibodies, Viral , Immunogenicity, Vaccine , Vaccination , Antibodies, Neutralizing
8.
J Control Release ; 357: 264-273, 2023 05.
Article in English | MEDLINE | ID: mdl-37015293

ABSTRACT

Respiratory viruses including the respiratory syncytial virus (RSV) aggravate the global burden of virus-inflicted morbidity and mortality. Entry inhibitors are a promising class of antiviral drugs for combating these viruses, as they can prevent infection at the site of viral entry, i.e., the respiratory tract. Here we used a broad-spectrum entry inhibitor, composed of a ß-cyclodextrin backbone, functionalized with 11-mercapto-1-undecanesulfonate (CD-MUS) that is capable of neutralizing a variety of viruses that employ heparan sulfate proteoglycans (HSPG) to infect host cells. CD-MUS inactivates viral particles irreversibly by binding to viral attachment proteins through a multivalent binding mechanism. In the present study, we show that CD-MUS is well tolerated when administered to the respiratory tract of mice. Based on this, we developed an inhalable spray-dried powder formulation that fits the size requirements for lung deposition and disperses well upon use with the Cyclops dry powder inhaler (DPI). Using an in vitro dose-response assay, we show that the compound retained its activity against RSV after the spray drying process. Our study sets the stage for further in vivo studies, exploring the efficacy of pulmonary administered CD-MUS in animal models of RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , Animals , Respiratory Syncytial Viruses/metabolism , Powders/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Administration, Inhalation , Viral Proteins/metabolism , Dry Powder Inhalers
9.
Pharmaceutics ; 15(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839998

ABSTRACT

Although vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations are an effective method to overcome the logistical barrier to immunization that is posed by these multiple-injection schedules. Here, we developed subcutaneously (s.c.) injectable microspheres with a sustained release of the model antigen bovine serum albumin (BSA). The microspheres were composed of blends of two novel biodegradable multi-block copolymers consisting of amorphous, hydrophilic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) blocks and semi-crystalline poly(dioxanone) (PDO) blocks of different block sizes. In vitro studies demonstrated that the release of BSA could be tailored over a period of approximately four to nine weeks by changing the blend ratio of both polymers. Moreover, it was found that BSA remained structurally intact during release. Microspheres exhibiting sustained release of BSA for six weeks were selected for the in vivo study in mice. The induced BSA-specific IgG antibody titers increased up to four weeks after administration and were of the same magnitude as found in mice that received a priming and a booster dose of BSA in phosphate-buffered saline (PBS). Determination of the BSA concentration in plasma showed that in vivo release probably took place up to at least four weeks, although plasma concentrations peaked already one week after administration. The sustained-release microspheres might be a viable alternative to the conventional prime-boost immunization schedule, but a clinically relevant antigen should be incorporated to assess the full potential of these microspheres in practice.

10.
Clin Infect Dis ; 76(3): e533-e536, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35723273

ABSTRACT

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous boosters after Ad26.COV2.S-priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Health Personnel , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL