Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493215

ABSTRACT

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Subject(s)
Arthritis, Rheumatoid , Receptor Protein-Tyrosine Kinases , Humans , Axl Receptor Tyrosine Kinase , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Synovial Membrane/metabolism
2.
iScience ; 26(8): 107374, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520727

ABSTRACT

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

3.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034597

ABSTRACT

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

4.
Nat Med ; 29(4): 888-897, 2023 04.
Article in English | MEDLINE | ID: mdl-37012549

ABSTRACT

B7 homolog 3 (B7-H3; CD276), a tumor-associated antigen and possible immune checkpoint, is highly expressed in prostate cancer (PCa) and is associated with early recurrence and metastasis. Enoblituzumab is a humanized, Fc-engineered, B7-H3-targeting antibody that mediates antibody-dependent cellular cytotoxicity. In this phase 2, biomarker-rich neoadjuvant trial, 32 biological males with operable intermediate to high-risk localized PCa were enrolled to evaluate the safety, anti-tumor activity and immunogenicity of enoblituzumab when given before prostatectomy. The coprimary outcomes were safety and undetectable prostate-specific antigen (PSA) level (PSA0) 1 year postprostatectomy, and the aim was to obtain an estimate of PSA0 with reasonable precision. The primary safety endpoint was met with no notable unexpected surgical or medical complications, or surgical delay. Overall, 12% of patients experienced grade 3 adverse events and no grade 4 events occurred. The coprimary endpoint of the PSA0 rate 1 year postprostatectomy was 66% (95% confidence interval 47-81%). The use of B7-H3-targeted immunotherapy in PCa is feasible and generally safe and preliminary data suggest potential clinical activity. The present study validates B7-H3 as a rational target for therapy development in PCa with larger studies planned. The ClinicalTrials.gov identifier is NCT02923180.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen/therapeutic use , Neoadjuvant Therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7 Antigens
5.
Nat Med ; 28(6): 1256-1268, 2022 06.
Article in English | MEDLINE | ID: mdl-35589854

ABSTRACT

Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5-20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n = 164), patients with low/absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocilizumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatment-response phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Biomarkers/analysis , Biopsy , Humans , Rituximab/therapeutic use
6.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35536669

ABSTRACT

BACKGROUNDCOVID-19 remains a global health emergency with limited treatment options, lagging vaccine rates, and inadequate healthcare resources in the face of an ongoing calamity. The disease is characterized by immune dysregulation and cytokine storm. Cyclosporine A (CSA) is a calcineurin inhibitor that modulates cytokine production and may have direct antiviral properties against coronaviruses.METHODSTo test whether a short course of CSA was safe in patients with COVID-19, we treated 10 hospitalized, oxygen-requiring, noncritically ill patients with CSA (starting at a dose of 9 mg/kg/d). We evaluated patients for clinical response and adverse events, measured serum cytokines and chemokines associated with COVID-19 hyperinflammation, and conducted gene-expression analyses.RESULTSFive participants experienced adverse events, none of which were serious; transaminitis was most common. No participant required intensive care unit-level care, and all patients were discharged alive. CSA treatment was associated with significant reductions in serum cytokines and chemokines important in COVID-19 hyperinflammation, including CXCL10. Following CSA administration, we also observed a significant reduction in type I IFN gene expression signatures and other transcriptional profiles associated with exacerbated hyperinflammation in the peripheral blood cells of these patients.CONCLUSIONShort courses of CSA appear safe and feasible in patients with COVID-19 who require oxygen and may be a useful adjunct in resource-limited health care settings.TRIAL REGISTRATIONThis trial was registered on ClinicalTrials.gov (Investigational New Drug Application no. 149997; ClinicalTrials.gov NCT04412785).FUNDINGThis study was internally funded by the Center for Cellular Immunotherapies.


Subject(s)
COVID-19 Drug Treatment , Cyclosporine/therapeutic use , Cytokines , Humans , Oxygen , SARS-CoV-2
7.
J Transl Med ; 19(1): 480, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34838031

ABSTRACT

BACKGROUND: The characterization of the immune component of the tumor microenvironment (TME) of human epidermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characterization of HER2+ TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated mechanisms and biomarker targets that could be used to guide selection of therapies. METHODS: We examined 15 specimens from eight patients with HER2+ breast cancer: 10 primary breast tumors (PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characterization of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the GeoMx Digital Spatial Profiler. RESULTS: PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expression of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particularly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune exclusion in the tumor epithelium. CONCLUSIONS: Our findings show stromal and tumor localized immune cells in the TME are more active in primary versus metastatic disease. This suggests patients with early HER2+ breast cancer could have more benefit from immune-targeting therapies than patients with advanced disease.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Female , Humans , Neoplasm Recurrence, Local , Proteomics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Transcriptome , Tumor Microenvironment
8.
Am J Clin Pathol ; 155(5): 748-754, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33258912

ABSTRACT

OBJECTIVES: Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma with a heterogenous genetic landscape that can require multiple assays to characterize. We reviewed a 1-step RNA-based assay to determine cell of origin (COO), detect translocations, and identify mutations and to assess the role of the assay in diagnosis. METHODS: Using a single custom Archer FusionPlex Lymphoma panel, we performed anchored multiplex polymerase chain reaction-based RNA sequencing on 41 cases of de novo DLBCL. Each case was subclassified by COO, and gene fusions and hotspot mutations were identified. The findings were then compared with COO classification by the Hans immunohistochemical algorithm and NanoString technology, cytogenetics, and fluorescence in situ hybridization results. RESULTS: Concordant COO classification by the FusionPlex panel and NanoString was observed in 35 of 41 cases (85.3%), with NanoString and Hans concordant in 33 of 41 cases (80.5%) and FusionPlex and Hans concordant in 33 of 41 cases (80.5%). The FusionPlex assay also detected 6 of 11 BCL6 translocations (4 cryptic), 2 of 3 BCL2 translocations, and 2 of 4 MYC translocations. Mutations were detected in lymphoma-related genes in 24 of 41 cases. CONCLUSION: This FusionPlex assay offers a single method for COO classification, mutation detection, and identification of important translocations in DLBCL. Although not replacing traditional testing, it could offer useful data when limited tissue is available.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation/genetics , Translocation, Genetic/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Male , Middle Aged , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Exome Sequencing/methods
10.
Psychooncology ; 29(8): 1296-1302, 2020 08.
Article in English | MEDLINE | ID: mdl-32458549

ABSTRACT

OBJECTIVE: Insomnia is a significant concern among African-American breast cancer survivors (BCS). Social constraints (SC)-receiving unsupportive or critical responses when expressing trauma-related emotions-and fear of recurrence (FOR) have been associated with insomnia. We examined FOR as a mediator in the relationship between SC and insomnia in African-American BCS. We hypothesized a direct effect of SC on insomnia, and an indirect effect of SC on insomnia through FOR. METHODS: Sixty-four African-American BCS completed a questionnaire assessing demographics, clinical characteristics, SC, FOR, and insomnia. Participants were an average of M = 8.41 (SD = 5.8) year survivors. The mediation was tested using PROCESS for SPSS. RESULTS: The direct effect of SC on insomnia was significant (direct effect = .17, SE = .08, P = .04). Moreover, the indirect effect of SC on insomnia through FOR was significant (indirect effect = .19, SE = .10, 95% CI = .05, .41). CONCLUSIONS: Experiencing SC from family and friends could produce cognitions that impact sleep for BCS, and FOR could be one of those cognitions. Family-based models of care that emphasize the emotional needs of survivors and families could be a relevant strategy to address the SC that impacts sleep.


Subject(s)
Black or African American/psychology , Breast Neoplasms/psychology , Cancer Survivors/psychology , Fear/psychology , Neoplasm Recurrence, Local/psychology , Sleep Initiation and Maintenance Disorders/psychology , Adult , Breast Neoplasms/etiology , Cognition , Female , Humans , Middle Aged , Neoplasm Recurrence, Local/etiology , Sleep , Sleep Initiation and Maintenance Disorders/etiology , Surveys and Questionnaires
11.
J Racial Ethn Health Disparities ; 7(2): 202-206, 2020 04.
Article in English | MEDLINE | ID: mdl-31953638

ABSTRACT

Underrepresented minority faculty in academic medicine continue to be underrepresented in academic health centers across the country. Their underrepresentation impacts advancements in clinical care, education, and discovery and slows our forward progress in the field. Underrepresented in medicine faculty includes people who are black or African American, Hispanic or Latinx, or Native American. Barriers to underrepresented faculty recruitment, retention, and advancement include minority and gratitude taxes, imposter syndrome, and a lack of an appreciation of power distance and distance traveled. This article reviews five barriers to progress in achieving appropriate diversity among faculty and leadership of academic health centers, focusing on the multiplying effects of these barriers and potential steps forward.


Subject(s)
Cultural Diversity , Faculty, Medical/statistics & numerical data , Minority Groups/statistics & numerical data , Schools, Medical/statistics & numerical data , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...