Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Emerg Infect Dis ; 30(1): 163-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38063078

ABSTRACT

We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Humans , Gastroenteritis/epidemiology , Norovirus/genetics , Caliciviridae Infections/epidemiology , Genotype , Pandemics , Phylogeny
2.
Wellcome Open Res ; 8: 96, 2023.
Article in English | MEDLINE | ID: mdl-38058535

ABSTRACT

Background: The ability of SARS-CoV-2 vaccines to protect against infection and onward transmission determines whether immunisation can control global circulation. We estimated the effectiveness of Pfizer-BioNTech mRNA vaccine (BNT162b2) and Oxford AstraZeneca adenovirus vector vaccine (ChAdOx1) vaccines against acquisition and transmission of the Alpha and Delta variants in a prospective household study in England. Methods: Households were recruited based on adult purported index cases testing positive after reverse transcription-quantitative (RT-q)PCR testing of oral-nasal swabs. Purported index cases and their household contacts took oral-nasal swabs on days 1, 3 and 7 after enrolment and a subset of the PCR-positive swabs underwent genomic sequencing conducted on a subset. We used Bayesian logistic regression to infer vaccine effectiveness against acquisition and transmission, adjusted for age, vaccination history and variant. Results: Between 2 February 2021 and 10 September 2021, 213 index cases and 312 contacts were followed up. After excluding households lacking genomic proximity (N=2) or with unlikely serial intervals (N=16), 195 households with 278 contacts remained, of whom 113 (41%) became PCR positive. Delta lineages had 1.53 times the risk (95% Credible Interval: 1.04 - 2.20) of transmission than Alpha; contacts older than 18 years old were 1.48 (1.20 - 1.91) and 1.02 (0.93 - 1.16) times more likely to acquire an Alpha or Delta infection than children. Effectiveness of two doses of BNT162b2 against transmission of Delta was 36% (-1%, 66%) and 49% (18%, 73%) for ChAdOx1, similar to their effectiveness for Alpha. Protection against infection with Alpha was higher than for Delta, 69% (9%, 95%) vs. 18% (-11%, 59%), respectively, for BNT162b2 and 24% (-41%, 72%) vs. 9% (-15%, 42%), respectively, for ChAdOx1. Conclusions: BNT162b2 and ChAdOx1 reduce transmission of the Delta variant from breakthrough infections in the household setting, although their protection against infection within this setting is low.

3.
Virus Evol ; 9(2): vead073, 2023.
Article in English | MEDLINE | ID: mdl-38131006

ABSTRACT

The Philippines has had a rapidly growing human immunodeficiency virus (HIV) epidemic with a shift in the prevalent subtype from B to CRF01_AE. However, the phylodynamic history of CRF01_AE in the Philippines has yet to be reconstructed. We conducted a descriptive retrospective study reconstructing the history of HIV-1 CRF01_AE transmissions in the Philippines through molecular epidemiology. Partial polymerase sequences (n = 1144) collected between 2008 and 2018 from three island groups were collated from the Research Institute for Tropical Medicine drug resistance genotyping database. Estimation of the time to the most recent common ancestor (tMRCA), effective reproductive number (Re), effective viral population size (Ne), relative migration rates, and geographic spread of CRF01_AE was performed with BEAST. Re and Ne were compared between CRF01_AE and B. Most CRF01_AE sequences formed a single clade with a tMRCA of June 1996 [95 per cent highest posterior density (HPD): December 1991, October 1999]. An increasing CRF01_AE Ne was observed from the tMRCA to 2013. The CRF01_AE Re reached peaks of 2.46 [95 per cent HPD: 1.76, 3.27] in 2007 and 2.52 [95 per cent HPD: 1.83, 3.34] in 2015. A decrease of CRF01_AE Re occurred in the intervening years of 2007 to 2011, reaching as low as 1.43 [95 per cent HPD: 1.06, 1.90] in 2011, followed by a rebound. The CRF01_AE epidemic most likely started in Luzon and then spread to the other island groups of the country. Both CRF01_AE and Subtype B exhibited similar patterns of Re fluctuation over time. These results characterize the subtype-specific phylodynamic history of the largest CRF01_AE cluster in the Philippines, which contextualizes and may inform past, present, and future public health measures toward controlling the HIV epidemic in the Philippines.

4.
Virus Evol ; 9(1): vead012, 2023.
Article in English | MEDLINE | ID: mdl-36926448

ABSTRACT

Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.

5.
Virus Evol ; 9(1): vead007, 2023.
Article in English | MEDLINE | ID: mdl-36926449

ABSTRACT

Transmission trees can be established through detailed contact histories, statistical or phylogenetic inference, or a combination of methods. Each approach has its limitations, and the extent to which they succeed in revealing a 'true' transmission history remains unclear. In this study, we compared the transmission trees obtained through contact tracing investigations and various inference methods to identify the contribution and value of each approach. We studied eighty-six sequenced cases reported in Guinea between March and November 2015. Contact tracing investigations classified these cases into eight independent transmission chains. We inferred the transmission history from the genetic sequences of the cases (phylogenetic approach), their onset date (epidemiological approach), and a combination of both (combined approach). The inferred transmission trees were then compared to those from the contact tracing investigations. Inference methods using individual data sources (i.e. the phylogenetic analysis and the epidemiological approach) were insufficiently informative to accurately reconstruct the transmission trees and the direction of transmission. The combined approach was able to identify a reduced pool of infectors for each case and highlight likely connections among chains classified as independent by the contact tracing investigations. Overall, the transmissions identified by the contact tracing investigations agreed with the evolutionary history of the viral genomes, even though some cases appeared to be misclassified. Therefore, collecting genetic sequences during outbreak is key to supplement the information contained in contact tracing investigations. Although none of the methods we used could identify one unique infector per case, the combined approach highlighted the added value of mixing epidemiological and genetic information to reconstruct who infected whom.

6.
Lancet Glob Health ; 11(3): e414-e424, 2023 03.
Article in English | MEDLINE | ID: mdl-36796985

ABSTRACT

BACKGROUND: COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics of the past 100 years. Genomic sequencing has an important role in monitoring of the evolution of the virus, including the detection of new viral variants. We aimed to describe the genomic epidemiology of SARS-CoV-2 infections in The Gambia. METHODS: Nasopharyngeal or oropharyngeal swabs collected from people with suspected cases of COVID-19 and international travellers were tested for SARS-CoV-2 with standard RT-PCR methods. SARS-CoV-2-positive samples were sequenced according to standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and Pangolin was used to assign lineages. To construct phylogenetic trees, sequences were first stratified into different COVID-19 waves (waves 1-4) and aligned. Clustering analysis was done and phylogenetic trees constructed. FINDINGS: Between March, 2020, and January, 2022, 11 911 confirmed cases of COVID-19 were recorded in The Gambia, and 1638 SARS-CoV-2 genomes were sequenced. Cases were broadly distributed into four waves, with more cases during the waves that coincided with the rainy season (July-October). Each wave occurred after the introduction of new viral variants or lineages, or both, generally those already established in Europe or in other African countries. Local transmission was higher during the first and third waves (ie, those that corresponded with the rainy season), in which the B.1.416 lineage and delta (AY.34.1) were dominant, respectively. The second wave was driven by the alpha and eta variants and the B.1.1.420 lineage. The fourth wave was driven by the omicron variant and was predominantly associated with the BA.1.1 lineage. INTERPRETATION: More cases of SARS-CoV-2 infection were recorded in The Gambia during peaks of the pandemic that coincided with the rainy season, in line with transmission patterns for other respiratory viruses. The introduction of new lineages or variants preceded epidemic waves, highlighting the importance of implementing well structured genomic surveillance at a national level to detect and monitor emerging and circulating variants. FUNDING: Medical Research Unit The Gambia at London School of Hygiene & Tropical Medicine, UK Research and Innovation, WHO.


Subject(s)
COVID-19 , Humans , Gambia/epidemiology , COVID-19/epidemiology , Phylogeny , SARS-CoV-2/genetics , Genomics
7.
Virus Evol ; 9(1): vead005, 2023.
Article in English | MEDLINE | ID: mdl-36793939

ABSTRACT

Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domestic sheep (Ovis aries) and goats (Capra hircus) worldwide. The vast majority of SRLV infections involve two genotypes (A and B) that spread in association with the emergence of global livestock trade. However, SRLVs have likely been present in Eurasian ruminant populations since at least the early Neolithic period. Here, we use phylogenetic and phylogeographic approaches to reconstruct the origin of pandemic SRLV strains and infer their historical pattern of global spread. We constructed an open computational resource ('Lentivirus-GLUE') via which an up-to-date database of published SRLV sequences, multiple sequence alignments (MSAs), and sequence-associated metadata can be maintained. We used data collated in Lentivirus-GLUE to perform a comprehensive phylogenetic investigation of global SRLV diversity. Phylogenies reconstructed from genome-length alignments reveal that the deep divisions in the SRLV phylogeny are consistent with an ancient split into Eastern (A-like) and Western (B-like) lineages as agricultural systems disseminated out of domestication centres during the Neolithic period. These findings are also consistent with historical and phylogeographic evidence linking the early 20th century emergence of SRLV-A to the international export of Central Asian Karakul sheep. Investigating the global diversity of SRLVs can help reveal how anthropogenic factors have impacted the ecology and evolution of livestock diseases. The open resources generated in our study can expedite these studies and can also serve more broadly to facilitate the use of genomic data in SRLV diagnostics and research.

8.
Lancet Microbe ; 4(2): e102-e112, 2023 02.
Article in English | MEDLINE | ID: mdl-36642083

ABSTRACT

BACKGROUND: HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS: We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS: We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION: We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING: Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Sexual and Gender Minorities , Humans , Male , Female , HIV Infections/epidemiology , HIV Infections/drug therapy , HIV-1/genetics , Homosexuality, Male , Anti-HIV Agents/therapeutic use , HIV Seropositivity/epidemiology , HIV Seropositivity/drug therapy
9.
Wellcome Open Res ; 8: 427, 2023.
Article in English | MEDLINE | ID: mdl-38638914

ABSTRACT

Background: Inference on pneumococcal transmission has mostly relied on longitudinal studies which are costly and resource intensive. Therefore, we conducted a pilot study to test the ability to infer who infected whom from cross-sectional pneumococcal sequences using phylogenetic inference. Methods: Five suspected transmission pairs, for which there was epidemiological evidence of who infected whom, were selected from a household study. For each pair, Streptococcus pneumoniae full genomes were sequenced from nasopharyngeal swabs collected on the same day. The within-host genetic diversity of the pneumococcal population was used to infer the transmission direction and then cross-validated with the direction suggested by the epidemiological records. Results: The pneumococcal genomes clustered into the five households from which the samples were taken. The proportion of concordantly inferred transmission direction generally increased with increasing minimum genome fragment size and single nucleotide polymorphisms. We observed a larger proportion of unique polymorphic sites in the source bacterial population compared to that of the recipient in four of the five pairs, as expected in the case of a transmission bottleneck. The only pair that did not exhibit this effect was also the pair that had consistent discordant transmission direction compared to the epidemiological records suggesting potential misdirection as a result of false-negative sampling. Conclusions: This pilot provided support for further studies to test if the direction of pneumococcal transmission can be reliably inferred from cross-sectional samples if sequenced with sufficient depth and fragment length.

10.
Proc Natl Acad Sci U S A ; 119(38): e2210604119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36103580

ABSTRACT

Inferring the transmission direction between linked individuals living with HIV provides unparalleled power to understand the epidemiology that determines transmission. Phylogenetic ancestral-state reconstruction approaches infer the transmission direction by identifying the individual in whom the most recent common ancestor of the virus populations originated. While these methods vary in accuracy, it is unclear why. To evaluate the performance of phylogenetic ancestral-state reconstruction to determine the transmission direction of HIV-1 infection, we inferred the transmission direction for 112 transmission pairs where transmission direction and detailed additional information were available. We then fit a statistical model to evaluate the extent to which epidemiological, sampling, genetic, and phylogenetic factors influenced the outcome of the inference. Finally, we repeated the analysis under real-life conditions with only routinely available data. We found that whether ancestral-state reconstruction correctly infers the transmission direction depends principally on the phylogeny's topology. For example, under real-life conditions, the probability of identifying the correct transmission direction increases from 32%-when a monophyletic-monophyletic or paraphyletic-polyphyletic tree topology is observed and when the tip closest to the root does not agree with the state at the root-to 93% when a paraphyletic-monophyletic topology is observed and when the tip closest to the root agrees with the root state. Our results suggest that documenting larger differences in relative intrahost diversity increases our confidence in the transmission direction inference of linked pairs for population-level studies of HIV. These findings provide a practical starting point to determine our confidence in transmission direction inference from ancestral-state reconstruction.


Subject(s)
HIV Infections , HIV-1 , Sexual Partners , Female , HIV Infections/transmission , HIV Infections/virology , Humans , Male , Models, Statistical , Phylogeny , Sexual Partners/classification
11.
PLoS Negl Trop Dis ; 16(5): e0010365, 2022 05.
Article in English | MEDLINE | ID: mdl-35507552

ABSTRACT

BACKGROUND: Characterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis. METHODS AND FINDINGS: Serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden's J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1-2 of fever, yet were confirmatory of primary infections on days 3-5 of fever. CONCLUSION: We demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings.


Subject(s)
Dengue Virus , Dengue , Antibodies, Viral , Cross-Sectional Studies , Dengue/epidemiology , Diagnostic Tests, Routine , Fever , Humans , Immunoglobulin G , Immunoglobulin M , Point-of-Care Systems , Sensitivity and Specificity , Viral Nonstructural Proteins , Viremia
13.
Nat Commun ; 13(1): 671, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115517

ABSTRACT

Hospital outbreaks of COVID19 result in considerable mortality and disruption to healthcare services and yet little is known about transmission within this setting. We characterise within hospital transmission by combining viral genomic and epidemiological data using Bayesian modelling amongst 2181 patients and healthcare workers from a large UK NHS Trust. Transmission events were compared between Wave 1 (1st March to 25th J'uly 2020) and Wave 2 (30th November 2020 to 24th January 2021). We show that staff-to-staff transmissions reduced from 31.6% to 12.9% of all infections. Patient-to-patient transmissions increased from 27.1% to 52.1%. 40%-50% of hospital-onset patient cases resulted in onward transmission compared to 4% of community-acquired cases. Control measures introduced during the pandemic likely reduced transmissions between healthcare workers but were insufficient to prevent increasing numbers of patient-to-patient transmissions. As hospital-acquired cases drive most onward transmission, earlier identification of nosocomial cases will be required to break hospital transmission chains.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Molecular Epidemiology , Pandemics , SARS-CoV-2/genetics , Bayes Theorem , Cohort Studies , Cross Infection/epidemiology , Cross Infection/transmission , Disease Outbreaks , Genomics , Health Personnel , Hospitals , Humans , United Kingdom/epidemiology
14.
Curr Opin Virol ; 51: 56-64, 2021 12.
Article in English | MEDLINE | ID: mdl-34597873

ABSTRACT

Drug resistance mutations appear in HIV under treatment pressure. Resistant variants can be transmitted to treatment-naive individuals, which can lead to rapid virological failure and can limit treatment options. Consequently, quantifying the prevalence, emergence and transmission of drug resistance is critical to effectively treating patients and to shape health policies. We review recent bioinformatics developments and in particular describe: (1) the machine learning approaches intended to predict and explain the level of resistance of HIV variants from their sequence data; (2) the phylogenetic methods used to survey the emergence and dynamics of resistant HIV transmission clusters; (3) the impact of deep sequencing in studying within-host and between-host genetic diversity of HIV variants, notably regarding minority resistant variants.


Subject(s)
Computational Biology , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV/drug effects , HIV/genetics , Mutation , HIV/classification , Humans , Phylogeny
15.
Virus Evol ; 7(1): veab024, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34422316

ABSTRACT

Genetic diversity of HIV-2 groups A and B has not yet been fully described, especially in a few Western Africa countries such as Ivory-Coast or Mali. We collected 444 pol, 152 vif, 129 env, and 74 LTR sequences from patients of the French ANRS CO5 HIV-2 cohort completed by 221 pol, 18 vif, 377 env, and 63 LTR unique sequences from public databases. We performed phylogenetic reconstructions and revealed two distinct lineages within HIV-2 group A, herein called A1 and A2, presenting non-negligible genetic distances and distinct geographic distributions as A1 is related to coastal Western African countries and A2 to inland Western countries. Estimated early diversification times for groups A and B in human populations were 1940 [95% higher probability densitiy: 1935-53] and 1961 [1952-70]. A1 experienced an early diversification in 1942 [1937-58] with two distinct early epidemics in Guinea-Bissau or Senegal, raising the possibility of group A emergence in those countries from an initial introduction from Ivory-Coast to Senegal, two former French colonies. Changes in effective population sizes over time revealed that A1 exponentially grew concomitantly to Guinea-Bissau independence war, but both A2 and B lineages experienced a latter growth, starting during the 80s economic crisis. This large HIV-2 genetic analysis provides the existence of two distinct subtypes within group A and new data about HIV-2 early spreading patterns and recent epidemiologic evolution for which data are scarce outside Guinea-Bissau.

16.
PLoS Comput Biol ; 17(8): e1008873, 2021 08.
Article in English | MEDLINE | ID: mdl-34437532

ABSTRACT

Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are commonly transmitted to naive patients. The standard approach to reveal new DRMs is to test for significant frequency differences of mutations between treated and naive patients. However, we then consider each mutation individually and cannot hope to study interactions between several mutations. Here, we aim to leverage the ever-growing quantity of high-quality sequence data and machine learning methods to study such interactions (i.e. epistasis), as well as try to find new DRMs. We trained classifiers to discriminate between Reverse Transcriptase Inhibitor (RTI)-experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT) sequence dataset from the UK (n ≈ 55, 000), using all observed mutations as binary representation features. To assess the robustness of our findings, our classifiers were evaluated on independent data sets, both from the UK and Africa. Important representation features for each classifier were then extracted as potential DRMs. To find novel DRMs, we repeated this process by removing either features or samples associated to known DRMs. When keeping all known resistance signal, we detected sufficiently prevalent known DRMs, thus validating the approach. When removing features corresponding to known DRMs, our classifiers retained some prediction accuracy, and six new mutations significantly associated with resistance were identified. These six mutations have a low genetic barrier, are correlated to known DRMs, and are spatially close to either the RT active site or the regulatory binding pocket. When removing both known DRM features and sequences containing at least one known DRM, our classifiers lose all prediction accuracy. These results likely indicate that all mutations directly conferring resistance have been found, and that our newly discovered DRMs are accessory or compensatory mutations. Moreover, apart from the accessory nature of the relationships we found, we did not find any significant signal of further, more subtle epistasis combining several mutations which individually do not seem to confer any resistance.


Subject(s)
Big Data , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Supervised Machine Learning , Africa , Anti-HIV Agents/pharmacology , Bayes Theorem , Computational Biology , Databases, Genetic , Decision Trees , Epistasis, Genetic , Genes, Viral , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , Humans , Logistic Models , Models, Genetic , Mutation , United Kingdom
17.
PLoS Negl Trop Dis ; 15(8): e0009562, 2021 08.
Article in English | MEDLINE | ID: mdl-34379641

ABSTRACT

BACKGROUND: Targeting interventions to areas that have recently experienced cases of disease is one strategy to contain outbreaks of infectious disease. Such case-area targeted interventions (CATI) have become an increasingly popular approach for dengue control but there is little evidence to suggest how precisely targeted or how recent cases need to be, to mount an effective response. The growing interest in the development of prophylactic and therapeutic drugs for dengue has also given new relevance for CATI strategies to interrupt transmission or deliver early treatment. METHODS/PRINCIPAL FINDINGS: Here we develop a patch-based mathematical model of spatial dengue spread and fit it to spatiotemporal datasets from Singapore. Simulations from this model suggest CATI strategies could be effective, particularly if used in lower density areas. To maximise effectiveness, increasing the size of the radius around an index case should be prioritised even if it results in delays in the intervention being applied. This is partially because large intervention radii ensure individuals receive multiple and regular rounds of drug dosing or vector control, and thus boost overall coverage. Given equivalent efficacy, CATIs using prophylactic drugs are predicted to be more effective than adult mosquito-killing vector control methods and may even offer the possibility of interrupting individual chains of transmission if rapidly deployed. CATI strategies quickly lose their effectiveness if baseline transmission increases or case detection rates fall. CONCLUSIONS/SIGNIFICANCE: These results suggest CATI strategies can play an important role in dengue control but are likely to be most relevant for low transmission areas where high coverage of other non-reactive interventions already exists. Controlled field trials are needed to assess the field efficacy and practical constraints of large operational CATI strategies.


Subject(s)
Case Management , Dengue/epidemiology , Dengue/therapy , Models, Theoretical , Animals , Computer Simulation , Dengue/prevention & control , Dengue/transmission , Disease Outbreaks/prevention & control , Humans , Mosquito Control/methods , Regression Analysis , Singapore
18.
Nat Commun ; 12(1): 1671, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723237

ABSTRACT

Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can also persist at low levels over multiple years. The reasons for these diverse transmission dynamics remain poorly understood. In Fiji, which has experienced multiple large single-season dengue epidemics, there was evidence of multi-year transmission of ZIKV between 2013 and 2017. To identify factors that could explain these differences in dynamics between closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to surveillance, serological and molecular data. We estimate that the observed dynamics of ZIKV were the result of two key factors: strong seasonal effects, which created an ecologically optimal time of year for outbreaks; and introduction of ZIKV after this optimal time, which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to multiple data sources could help identify a similar range of possible outbreak dynamics in other settings.


Subject(s)
Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Animals , Culicidae , Dengue/transmission , Dengue Virus , Disease Outbreaks , Epidemics , Fiji/epidemiology , Flavivirus , Humans , Mosquito Vectors/virology , Seasons , Zika Virus , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission
19.
Science ; 369(6499): 103-108, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32631894

ABSTRACT

During sexual transmission, the high genetic diversity of HIV-1 within an individual is frequently reduced to one founder variant that initiates infection. Understanding the drivers of this bottleneck is crucial to developing effective infection control strategies. Little is known about the importance of the source partner during this bottleneck. To test the hypothesis that the source partner affects the number of HIV founder variants, we developed a phylodynamic model calibrated using genetic and epidemiological data on all existing transmission pairs for whom the direction of transmission and the infection stage of the source partner are known. Our results suggest that acquiring infection from someone in the acute (early) stage of infection increases the risk of multiple-founder variant transmission compared with acquiring infection from someone in the chronic (later) stage of infection. This study provides the first direct test of source partner characteristics to explain the low frequency of multiple-founder strain infections.


Subject(s)
Founder Effect , HIV Infections/transmission , HIV Infections/virology , HIV-1/genetics , Genetic Variation , HIV-1/classification , Humans , Phylogeny , Sexual Partners , Viral Load
20.
Cancers (Basel) ; 12(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231077

ABSTRACT

Adjuvant radiotherapy after prostatectomy was recently challenged by early salvage radiotherapy, which highlighted the need for biomarkers to improve risk stratification. Therefore, we developed an MRI ADC map-derived radiomics model to predict biochemical recurrence (BCR) and BCR-free survival (bRFS) after surgery. Our goal in this work was to externally validate this radiomics-based prediction model. EXPERIMENTAL DESIGN: A total of 195 patients with a high recurrence risk of prostate cancer (pT3-4 and/or R1 and/or Gleason's score > 7) were retrospectively included in two institutions. Patients with postoperative PSA (Prostate Specific Antigen) > 0.04 ng/mL or lymph node involvement were excluded. Radiomics features were extracted from T2 and ADC delineated tumors. A total of 107 patients from Institution 1 were used to retrain the previously published model. The retrained model was then applied to 88 patients from Institution 2 for external validation. BCR predictions were evaluated using AUC (Area Under the Curve), accuracy, and bRFS using Kaplan-Meier curves. RESULTS: With a median follow-up of 46.3 months, 52/195 patients experienced BCR. In the retraining cohort, the clinical prediction model (combining the number of risk factors and postoperative PSA) demonstrated moderate predictive power (accuracy of 63%). The radiomics model (ADC-based SZEGLSZM) predicted BCR with an accuracy of 78% and allowed for significant stratification of patients for bRFS (p < 0.0001). In Institution 2, this radiomics model remained predictive of BCR (accuracy of 0.76%) contrary to the clinical model (accuracy of 0.56%). CONCLUSIONS: The recently developed MRI ADC map-based radiomics model was validated in terms of its predictive accuracy of BCR and bRFS after prostatectomy in an external cohort.

SELECTION OF CITATIONS
SEARCH DETAIL
...