Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38260425

ABSTRACT

Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared to a prior metagenome analysis of the same dataset.

2.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894742

ABSTRACT

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

3.
Microorganisms ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835306

ABSTRACT

Stony coral tissue loss disease (SCTLD) is an emergent and often lethal coral disease that was first reported near Miami, FL (USA) in 2014. Our objective was to determine if coral colonies showing signs of SCTLD possess a specific microbial signature across five susceptible species sampled in Florida's Coral Reef. Three sample types were collected: lesion tissue and apparently unaffected tissue of diseased colonies, and tissue of apparently healthy colonies. Using 16S rRNA high-throughput gene sequencing, our results show that, for every species, the microbial community composition of lesion tissue was significantly different from healthy colony tissue and from the unaffected tissue of diseased colonies. The lesion tissue of all but one species (Siderastrea siderea) had higher relative abundances of the order Rhodobacterales compared with other types of tissue samples, which may partly explain why S. siderea lesions often differed in appearance compared to other species. The order Clostridiales was also present at relatively high abundances in the lesion tissue of three species compared to healthy and unaffected tissues. Stress often leads to the dysbiosis of coral microbiomes and increases the abundance of opportunistic pathogens. The present study suggests that Rhodobacterales and Clostridiales likely play an important role in SCTLD.

4.
PeerJ ; 9: e12549, 2021.
Article in English | MEDLINE | ID: mdl-35003917

ABSTRACT

Quantifying recruitment of corals is important for evaluating their capacity to recover after disturbances through natural processes, yet measuring recruitment rates in situ is challenging due to the minute size of the study organism and the complexity of benthic communities. Settlement tiles are widely used in studies of coral recruitment because they can be viewed under a microscope to enhance accuracy, but methodological choices such as the rugosity of tiles used and when and how to scan tiles for recruits post-collection may cause inconsistencies in measured recruitment rates. We deployed 2,880 tiles with matching rugosity on top and bottom surfaces to 30 sites along the Florida Reef Tract for year-long saturations during a three year study. We scanned the top and bottom surfaces of the same tiles for scleractinian recruits before (live scans) and after treating tiles with sodium hypochlorite (corallite scans). Recruit counts were higher in corallite than live scans, indicating that scleractinian recruitment rates should not be directly compared between studies using live scans and those scanning tiles which have been processed to remove fouling material. Recruit counts also were higher on tile tops in general, but the proportion of settlement to the top and bottom surfaces varied significantly by scleractinian family. Thus, biases may be introduced in recruitment datasets by differences in tile rugosity or by only scanning a subset of tile surfaces. Finally, we quantified octocoral recruitment during live scans and found they preferentially settled to tile tops. We recommend that recruitment tile studies include corallite scans for scleractinian skeletons, deploy tiles with matching rugosity on top and bottom surfaces, and scan all tile surfaces.

5.
Front Microbiol ; 11: 681, 2020.
Article in English | MEDLINE | ID: mdl-32425901

ABSTRACT

In 2014, Stony Coral Tissue Loss Disease (SCTLD) was first detected off the coast of Miami, FL, United States, and continues to persist and spread along the Florida Reef Tractr (FRT) and into the Caribbean. SCTLD can have up to a 61% prevalence in reefs and has affected at least 23 species of scleractinian corals. This has contributed to the regional near-extinction of at least one coral species, Dendrogyra cylindrus. Initial studies of SCTLD indicate microbial community shifts and cessation of lesion progression in response to antibiotics on some colonies. However, the etiology and abiotic sources of SCTLD transmission are unknown. To characterize SCTLD microbial signatures, we collected tissue samples from four affected coral species: Stephanocoenia intersepta, Diploria labyrinthiformis, Dichocoenia stokesii, and Meandrina meandrites. Tissue samples were from apparently healthy (AH) corals, and unaffected tissue (DU) and lesion tissue (DL) on diseased corals. Samples were collected in June 2018 from three zones: (1) vulnerable (ahead of the SCTLD disease boundary in the Lower Florida Keys), (2) endemic (post-outbreak in the Upper Florida Keys), and (3) epidemic (SCTLD was active and prevalent in the Middle Florida Keys). From each zone, sediment and water samples were also collected to identify whether they may serve as potential sources of transmission for SCTLD-associated microbes. We used 16S rRNA gene amplicon high-throughput sequencing methods to characterize the microbiomes of the coral, water, and sediment samples. We identified a relatively higher abundance of the bacteria orders Rhodobacterales and Rhizobiales in DL tissue compared to AH and DU tissue. Also, our results showed relatively higher abundances of Rhodobacterales in water from the endemic and epidemic zones compared to the vulnerable zone. Rhodobacterales and Rhizobiales identified at higher relative abundances in DL samples were also detected in sediment samples, but not in water samples. Our data indicate that Rhodobacterales and Rhizobiales may play a role in SCTLD and that sediment may be a source of transmission for Rhodobacterales and Rhizobiales associated with SCTLD lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...