Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2873, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30814665

ABSTRACT

Due to unique properties and great design flexibilities, Fano resonances represent one of the most promising optical features mediated by metallic nanostructures, while the excitation of some Fano modes is impossible due to symmetry reasons. The aim of this work is to show that dense lattice arrangements can have a profound impact on the optical properties of nanostructures and, in particular, can enable the excitation of otherwise dark modes. Here, we demonstrate this concept using the example of rectangular arrays of symmetric trimers packed so densely that the coupling between neighbouring unit cells imposes a symmetry break, enabling the excitation of magnetic Fano resonances. We found that in experiments as well as in simulations, electric and magnetic Fano resonances can be simultaneously formed in cases where the inter-trimer distances are sufficiently small. By analysing the transition from an isolated trimer mode into a regime of strong near-field coupling, we show that by modifying the rectangular unit cell lengths due to the symmetry mismatch between lattice and trimer, two types of Fano resonances can be found, especially magnetic Fano resonances with loop-type magnetic field distributions within the centre of each trimer, which can be either enhanced or suppressed. In addition, the influence of the refractive index environment was measured, showing sensitivity values of approximately 300 nm/RIU. Our work provides fundamental insights into the interaction of the lattice and nanostructure response and paves the way towards the observation of novel optical excitations.

2.
JAAD Case Rep ; 4(5): 458-461, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29984282

ABSTRACT

Bone involvement is relatively rare in vascular malformations. Gorham-Stout disease, also referred to as vanishing bone disease, is characterized by osteoclast activation and osteolysis caused by proliferating lymphatic endothelial cells. We present the case of a 12-year-old boy who had Gorham-Stout disease at the age of 8 years. The clinical course was complicated by pathological fractures and localized intravascular consumption coagulopathy. Sclerotherapy and embolization therapy led to normalization of the coagulation parameters and significant improvement of the clinical findings. We speculate that this effect may be attributable to the elimination of lymphatic endothelial cells.

3.
Materials (Basel) ; 11(2)2018 Feb 24.
Article in English | MEDLINE | ID: mdl-29495266

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is known as a molecular-specific and highly sensitive method. In order to enable the routine application of SERS, powerful SERS substrates are of great importance. Within this manuscript, a TopUp SERS substrate is introduced which is fabricated by a top-down process based on microstructuring as well as a bottom-up generation of silver nanostructures. The Raman signal of the support material acts as an internal standard in order to improve the quantification capabilities. The analyte molecule coverage of sulfamethoxazole on the surface of the nanostructures is characterized by the SERS signal evolution fitted by a Langmuir-Freundlich isotherm.

4.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29134772

ABSTRACT

The field of printed electronics is continually trying to reduce the dimensions of the electrical components. Here, a method of printing metallic lines with widths as small as 15 nm and up to a few micrometers using fountain pen nanolithography (FPN) is shown. The FPN technique is based on a bent nanopipette with atomic force feedback that acts similar to a nanopen. The geometry of the nanopen allows for rapid placement accuracy of the printing tip, on any desired location, with the highest of optical sub-micrometer resolution. Using this nanopen, investigations of various inks are undertaken together with instrumental and script-tool development that allows accurate printing of multiple layers. This has led to the printing of conductive lines using inks composed of silver nanoparticles and salt solutions of silver and copper. In addition, it is shown that the method can be applied to substrates of various materials with minimal effect on the dimension of the line. The line widths are varied by using nanopens with different orifices or by tailoring the wetting properties of the ink on the substrate. Metallic interconnections of conducting lines are reported.

5.
ACS Appl Mater Interfaces ; 9(44): 38854-38862, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29053250

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an attractive tool in the analytical sciences due to its high specificity and sensitivity. Because SERS-active substrates are only available as two-dimensional arrays, the fabrication of three-dimensional (3D) nanostructures allows for an increased number of hot spots in the focus volume, thus further amplifying the SERS signal. Although a great number of fabrication strategies for powerful SERS substrates exist, the generation of 3D nanostructures with high complexity and periodicity is still challenging. For this purpose, we report an easy fabrication technique for 3D nanostructures following a bottom-up preparation protocol. Enzymatically generated silver nanoparticles (EGNPs) are prepared, and the growth of hierarchically-designed 3D flower-like silica-silver composite nanostructures is induced by applying plasma-enhanced atomic layer deposition (PE-ALD) on the EGNPs. The morphology of these nanocomposites can be varied by changes in the PE-ALD cycle number, and a flower height of up to 10 µm is found. Moreover, the metallized (e.g., silver or gold) 3D nanostructures resulting from 135 PE-ALD cycles of silica creation provide highly reproducible SERS signals across the hydrophobic surface. Within this contribution, the morphological studies, optical properties, as well as the SERS response of these metallized silica-silver composite nanostructures applying vitamin B2 as a model analyte are introduced.

6.
Anal Chim Acta ; 949: 1-7, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27876141

ABSTRACT

Sulfamethoxazole (SMX) is a commonly applied antibiotic for treating urinary tract infections; however, allergic reactions and skin eczema are known side effects that are observed for all sulfonamides. Today, this molecule is present in drinking and surface water sources. The allowed concentration in tap water is 2·10-7 mol L-1. SMX could unintentionally be ingested by healthy people when drinking contaminated tap water, representing unnecessary drug intake. To assess the quality of tap water, fast, specific and sensitive detection methods are required, in which consequence measures for improving the purification of water might be initiated in the short term. Herein, the quantitative detection of SMX down to environmentally and physiologically relevant concentrations in the nanomolar range by employing surface-enhanced Raman spectroscopy (SERS) and a microfluidic cartridge system is presented. By applying surface-water samples as matrices, the detection of SMX down to 2.2·10-9 mol L-1 is achieved, which illustrates the great potential of our proposed method in environmental science.


Subject(s)
Anti-Bacterial Agents/analysis , Drinking Water/analysis , Spectrum Analysis, Raman , Sulfamethoxazole/analysis , Water Pollutants, Chemical/analysis , Microfluidic Analytical Techniques
7.
Talanta ; 160: 289-297, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27591616

ABSTRACT

Food analysis has been gaining interest throughout recent decades for different reasons: the detection of hazardous substances in food and routine investigations of food composition and vitamin/nutrient contents. Regardless of the targeted component, food analysis raises a few challenges regarding the complexity of the matrix and detecting trace amounts of substances. We report herein the results obtained regarding the simultaneous detection of two B vitamins (riboflavin, vitamin B2 and cyanocobalamin, vitamin B12) by means of SERS. SERS provides molecular fingerprint identification and high analytical sensitivity together with a low processing time and cost. All these make SERS a promising tool for the development of food analytical methods.


Subject(s)
Edible Grain/chemistry , Food Analysis/methods , Riboflavin/analysis , Vitamin B 12/analysis , Vitamins/analysis , Chromatography, High Pressure Liquid , Spectrum Analysis, Raman
8.
Analyst ; 141(14): 4447-55, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27200439

ABSTRACT

Carotenoids are molecules that play important roles in both plant development and in the well-being of mammalian organisms. Therefore, various studies have been performed to characterize carotenoids' properties, distribution in nature and their health benefits upon ingestion. Nevertheless, there is a gap regarding a fast detection of them at the plant phase. Within this contribution we report the results obtained regarding the application of surface enhanced Raman spectroscopy (SERS) toward the differentiation of two carotenoid molecules (namely, lycopene and ß-carotene) in tomato samples. To this end, an e-beam lithography (EBL) SERS-active substrate and a 488 nm excitation source were employed, and a relevant simulated matrix was prepared (by mixing the two carotenoids in defined percentages) and measured. Next, carotenoids were extracted from tomato plants and measured as well. Finally, a combination of principal component analysis and partial least squares regression (PCA-PLSR) was applied to process the data, and the obtained results were compared with HPLC measurements of the same extracts. A good agreement was obtained between the HPLC and the SERS results for most of the tomato samples.


Subject(s)
Carotenoids/analysis , Food Analysis/methods , Solanum lycopersicum/chemistry , Spectrum Analysis, Raman , beta Carotene/analysis , Lycopene
9.
Nano Lett ; 13(8): 3482-6, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23805879

ABSTRACT

A metal-insulator-metal (MIM) waveguide is a canonical structure used in many functional plasmonic devices. Recently, research on nanoresonantors made from finite, that is, truncated, MIM waveguides attracted a considerable deal of interest motivated by the promise for many applications. However, most suggested nanoresonators do not reach a deep-subwavelength domain. With ordinary fabrication techniques the dielectric spacers usually remain fairly thick, that is, in the order of tens of nanometers. This prevents the wavevector of the guided surface plasmon polariton to strongly deviate from the light line. Here, we will show that the exploitation of an extreme coupling regime, which appears for only a few nanometers thick dielectric spacer, can lift this limitation. By taking advantage of atomic layer deposition we fabricated and characterized exemplarily deep-subwavelength perfect absorbers. Our results are fully supported by numerical simulations and analytical considerations. Our work provides impetus on many fields of nanoscience and will foster various applications in high-impact areas such as metamaterials, light harvesting, and sensing or the fabrication of quantum-plasmonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...