Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Commun Biol ; 7(1): 829, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977904

ABSTRACT

Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.


Subject(s)
Arabidopsis , Chromosome Mapping , Quantitative Trait Loci , Recombination, Genetic , Arabidopsis/genetics , Chromosome Mapping/methods , Arabidopsis Proteins/genetics , Phenotype , RecQ Helicases/genetics , Plant Breeding/methods , Chromosomes, Plant/genetics , Crossing Over, Genetic
2.
New Phytol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030843

ABSTRACT

Amphicarpy is an unusual trait where two fruit types develop on the same plant: one above and the other belowground. This trait is not found in conventional model species. Therefore, its development and molecular genetics remain under-studied. Here, we establish the allooctoploid Cardamine chenopodiifolia as an emerging experimental system to study amphicarpy. We characterized C. chenopodiifolia development, focusing on differences in morphology and cell wall histochemistry between above- and belowground fruit. We generated a reference transcriptome with PacBio full-length transcript sequencing and analysed differential gene expression between above- and belowground fruit valves. Cardamine chenopodiifolia has two contrasting modes of seed dispersal. The main shoot fails to bolt and initiates floral primordia that grow underground where they self-pollinate and set seed. By contrast, axillary shoots bolt and develop exploding seed pods aboveground. Morphological differences between aerial explosive fruit and subterranean nonexplosive fruit were reflected in a large number of differentially regulated genes involved in photosynthesis, secondary cell wall formation and defence responses. Tools established in C. chenopodiifolia, such as a reference transcriptome, draft genome assembly and stable plant transformation, pave the way to study amphicarpy and trait evolution via allopolyploidy.

3.
Genome Biol ; 25(1): 194, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049052

ABSTRACT

BACKGROUND: Plant meristems are structured organs consisting of distinct layers of stem cells, which differentiate into new plant tissue. Mutations in meristematic layers can propagate into large sectors of the plant. However, the characteristics of meristematic mutations remain unclear, limiting our understanding of the genetic basis of somaclonal phenotypic variation. RESULTS: Here, we analyse the frequency and distribution of somatic mutations in an apricot tree. We separately sequence the epidermis (developing from meristem layer 1) and the flesh (developing from meristem layer 2) of several fruits sampled across the entire tree. We find that most somatic mutations (> 90%) are specific to individual layers. Interestingly, layer 1 shows a higher mutation load than layer 2, implying different mutational dynamics between the layers. The distribution of somatic mutations follows the branching of the tree. This suggests that somatic mutations are propagated to developing branches through axillary meristems. In turn, this leads us to the unexpected observation that the genomes of layer 1 of distant branches are more similar to each other than to the genomes of layer 2 of the same branches. Finally, using single-cell RNA sequencing, we demonstrate that layer-specific mutations were only transcribed in the cells of the respective layers and can form the genetic basis of somaclonal phenotypic variation. CONCLUSIONS: Here, we analyse the frequency and distribution of somatic mutations with meristematic origin. Our observations on the layer specificity of somatic mutations outline how they are distributed, how they propagate, and how they can impact clonally propagated crops.


Subject(s)
Meristem , Mutation , Meristem/genetics , Fruit/genetics , Fruit/growth & development , Phenotype , Genome, Plant
4.
Microbiol Resour Announc ; 13(7): e0031824, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38860808

ABSTRACT

The complete genome of "Candidatus Phytoplasma fraxini" AshY1, originating from Fraxinus americana in North America, was assembled using long reads from single-molecule real-time sequencing technology. The chromosome of 598 kb provides insights into the effector repertoire of a phytopathogenic bacterium from the 16SrVII phytoplasma group.

5.
Microorganisms ; 12(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792845

ABSTRACT

Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon 'Candidatus Phytoplasma asteris' were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of 'Ca. P. asteris' and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome.

6.
Nat Genet ; 56(5): 982-991, 2024 May.
Article in English | MEDLINE | ID: mdl-38605175

ABSTRACT

Although originally primarily a system for functional biology, Arabidopsis thaliana has, owing to its broad geographical distribution and adaptation to diverse environments, developed into a powerful model in population genomics. Here we present chromosome-level genome assemblies of 69 accessions from a global species range. We found that genomic colinearity is very conserved, even among geographically and genetically distant accessions. Along chromosome arms, megabase-scale rearrangements are rare and typically present only in a single accession. This indicates that the karyotype is quasi-fixed and that rearrangements in chromosome arms are counter-selected. Centromeric regions display higher structural dynamics, and divergences in core centromeres account for most of the genome size variations. Pan-genome analyses uncovered 32,986 distinct gene families, 60% being present in all accessions and 40% appearing to be dispensable, including 18% private to a single accession, indicating unexplored genic diversity. These 69 new Arabidopsis thaliana genome assemblies will empower future genetic research.


Subject(s)
Arabidopsis , Chromosomes, Plant , Genome, Plant , Arabidopsis/genetics , Chromosomes, Plant/genetics , Centromere/genetics , Genetic Variation , Genomics/methods , Phylogeny , Evolution, Molecular
7.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535224

ABSTRACT

While Botrytis cinerea causes gray mold on many plants, its close relative, Botrytis fabae, is host-specifically infecting predominantly faba bean plants. To explore the basis for its narrow host range, a gapless genome sequence of B. fabae strain G12 (BfabG12) was generated. The BfabG12 genome encompasses 45.0 Mb, with 16 chromosomal telomere-to-telomere contigs that show high synteny and sequence similarity to the corresponding B. cinerea B05.10 (BcB0510) chromosomes. Compared to BcB0510, it is 6% larger, due to many AT-rich regions containing remnants of transposable elements, but encodes fewer genes (11,420 vs. 11,707), due to losses of chromosomal segments with up to 20 genes. The coding capacity of BfabG12 is further reduced by nearly 400 genes that had been inactivated by mutations leading to truncations compared to their BcB0510 orthologues. Several species-specific gene clusters for secondary metabolite biosynthesis with stage-specific expression were identified. Comparison of the proteins secreted during infection revealed high similarities, including 17 phytotoxic proteins that were detected in both species. Our data indicate that evolution of the host-specific B. fabae occurred from an ancestral pathogen with wide host range similar to B. cinerea and was accompanied by losses and degeneration of genes, thereby reducing its pathogenic flexibility.

8.
Front Plant Sci ; 15: 1352757, 2024.
Article in English | MEDLINE | ID: mdl-38455730

ABSTRACT

The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.

9.
Nat Microbiol ; 9(4): 1117-1129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503974

ABSTRACT

DNA-amplicon-based microbiota profiling can estimate species diversity and abundance but cannot resolve genetic differences within individuals of the same species. Here we report the development of modular bacterial tags (MoBacTags) encoding DNA barcodes that enable tracking of near-isogenic bacterial commensals in an array of complex microbiome communities. Chromosomally integrated DNA barcodes are then co-amplified with endogenous marker genes of the community by integrating corresponding primer binding sites into the barcode. We use this approach to assess the contributions of individual bacterial genes to Arabidopsis thaliana root microbiota establishment with synthetic communities that include MoBacTag-labelled strains of Pseudomonas capeferrum. Results show reduced root colonization for certain mutant strains with defects in gluconic-acid-mediated host immunosuppression, which would not be detected with traditional amplicon sequencing. Our work illustrates how MoBacTags can be applied to assess scaling of individual bacterial genetic determinants in the plant microbiota.


Subject(s)
Arabidopsis , Microbiota , Humans , Bacteria/genetics , Microbiota/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Genes, Bacterial , Symbiosis
10.
Nat Plants ; 10(3): 423-438, 2024 03.
Article in English | MEDLINE | ID: mdl-38337039

ABSTRACT

Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features. Remarkably, we found that crossovers were abolished inside centromeric units but not in their proximity, indicating the absence of a canonical centromere effect. We further propose that telomere-led synapsis of homologues is the feature that best explains the observed recombination landscape. Our results hint at the primary influence of mechanistic features of meiotic pairing and synapsis rather than (epi)genomic features and centromere organization in determining the distally biased crossover distribution in R. breviuscula, whereas centromeres and (epi)genetic properties only affect crossover positioning locally.


Subject(s)
Chromosome Pairing , Homologous Recombination , Centromere/genetics
11.
Microbiome ; 12(1): 32, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374154

ABSTRACT

BACKGROUND: Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity, and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome, and metaproteome analyses. RESULTS: Prominent active 0.2-3 µm free-living clades comprised Aurantivirga, "Formosa", Cd. Prosiliicoccus, NS4, NS5, Amylibacter, Planktomarina, SAR11 Ia, SAR92, and SAR86, whereas BD1-7, Stappiaceae, Nitrincolaceae, Methylophagaceae, Sulfitobacter, NS9, Polaribacter, Lentimonas, CL500-3, Algibacter, and Glaciecola dominated 3-10 µm and > 10 µm particles. Particle-attached bacteria were more diverse and exhibited more dynamic adaptive shifts over time in terms of taxonomic composition and repertoires of encoded polysaccharide-targeting enzymes. In total, 305 species-level metagenome-assembled genomes were obtained, including 152 particle-attached bacteria, 100 of which were novel for the sampling site with 76 representing new species. Compared to free-living bacteria, they featured on average larger metagenome-assembled genomes with higher proportions of polysaccharide utilization loci. The latter were predicted to target a broader spectrum of polysaccharide substrates, ranging from readily soluble, simple structured storage polysaccharides (e.g., laminarin, α-glucans) to less soluble, complex structural, or secreted polysaccharides (e.g., xylans, cellulose, pectins). In particular, the potential to target poorly soluble or complex polysaccharides was more widespread among abundant and active particle-attached bacteria. CONCLUSIONS: Particle-attached bacteria represented only 1% of all bloom-associated bacteria, yet our data suggest that many abundant active clades played a pivotal gatekeeping role in the solubilization and subsequent degradation of numerous important classes of algal glycans. The high diversity of polysaccharide niches among the most active particle-attached clades therefore is a determining factor for the proportion of algal polysaccharides that can be rapidly remineralized during generally short-lived phytoplankton bloom events. Video Abstract.


Subject(s)
Flavobacteriaceae , Microalgae , Phytoplankton/genetics , Phytoplankton/metabolism , Eutrophication , Polysaccharides/metabolism , Flavobacteriaceae/metabolism , Microalgae/metabolism
12.
Mol Phylogenet Evol ; 189: 107930, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717642

ABSTRACT

The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.


Subject(s)
Chloroplasts , Phylogeny , DNA, Ribosomal/genetics
13.
PLoS Biol ; 21(7): e3002191, 2023 07.
Article in English | MEDLINE | ID: mdl-37463141

ABSTRACT

We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.


Subject(s)
Arabidopsis , Cardamine , Arabidopsis/genetics , Cardamine/genetics , Genotype , Phenotype , Demography
14.
Proc Natl Acad Sci U S A ; 120(31): e2302721120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487102

ABSTRACT

Symbioses with microbes play a pivotal role in the evolutionary success of insects, and can lead to intimate host-symbiont associations. However, how the host maintains a stable symbiosis with its beneficial partners while keeping antagonistic microbes in check remains incompletely understood. Here, we uncover a mechanism by which a host protects its symbiont from the host's own broad-range antimicrobial defense during transmission. Beewolves, a group of solitary digger wasps (Hymenoptera: Crabronidae), provide their brood cells with symbiotic Streptomyces bacteria that are later transferred to the cocoon and protect the offspring from opportunistic pathogens by producing antibiotics. In the brood cell, however, the symbiont-containing secretion is exposed to a toxic burst of nitric oxide (NO) released by the beewolf egg, which effectively kills antagonistic microorganisms. How the symbiont survives this lethal NO burst remained unknown. Here, we report that upon NO exposure in vitro, the symbionts mount a global stress response, but this is insufficient to ensure survival at brood cell-level NO concentrations. Instead, in vivo bioassays demonstrate that the host's antennal gland secretion (AGS) surrounding the symbionts in the brood cell provides an effective diffusion barrier against NO. This physicochemical protection can be reconstituted in vitro by beewolf hydrocarbon extracts and synthetic hydrocarbons, indicating that the host-derived long-chain alkenes and alkanes in the AGS are responsible for shielding the symbionts from NO. Our results reveal how host adaptations can protect a symbiont from host-generated oxidative and nitrosative stress during transmission, thereby efficiently balancing pathogen defense and mutualism maintenance.


Subject(s)
Anti-Infective Agents , Hymenoptera , Animals , Biological Evolution , Symbiosis/physiology , Hydrocarbons
15.
Nat Commun ; 14(1): 3749, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353496

ABSTRACT

Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.


Subject(s)
Haptophyta , Proteomics , Calcification, Physiologic/genetics , Oceans and Seas , Genomics , Haptophyta/genetics , Haptophyta/metabolism
16.
Nat Commun ; 14(1): 3502, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311740

ABSTRACT

The centromere is the chromosome region where microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms clustered centromeres in chromocenters at interphase. In addition, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Finally, using polymer simulations, we model the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about centromere diversity, showing that holocentricity is not restricted to species with numerous and small centromere units.


Subject(s)
Cell Cycle Proteins , Centromere , Centromere/genetics , Cell Division , Chromatids , Heterochromatin/genetics
17.
Genome Biol ; 24(1): 108, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158941

ABSTRACT

BACKGROUND: Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS: Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION: Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.


Subject(s)
Brassinosteroids , Zea mays , Zea mays/genetics , Alleles , Chromatin Immunoprecipitation Sequencing , Phenotype , Transcription Factors/genetics
18.
Front Plant Sci ; 14: 1180982, 2023.
Article in English | MEDLINE | ID: mdl-37223784

ABSTRACT

The downy mildew disease caused by the oomycete Plasmopara viticola is a serious threat for grapevine and can cause enormous yield losses in viticulture. The quantitative trait locus Rpv12, mediating resistance against P. viticola, was originally found in Asian Vitis amurensis. This locus and its genes were analyzed here in detail. A haplotype-separated genome sequence of the diploid Rpv12-carrier Gf.99-03 was created and annotated. The defense response against P. viticola was investigated in an infection time-course RNA-seq experiment, revealing approximately 600 upregulated Vitis genes during host-pathogen interaction. The Rpv12 regions of the resistance and the sensitivity encoding Gf.99-03 haplotype were structurally and functionally compared with each other. Two different clusters of resistance-related genes were identified within the Rpv12 locus. One cluster carries a set of four differentially expressed genes with three ACCELERATED CELL DEATH 6-like genes. The other cluster carries a set of six resistance gene analogs related to qualitative pathogen resistance. The Rpv12 locus and its candidate genes for P. viticola resistance provide a precious genetic resource for P. viticola resistance breeding. Newly developed co-segregating simple sequence repeat markers in close proximity to the R-genes enable its improved applicability in marker-assisted grapevine breeding.

19.
Microbiome ; 11(1): 77, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069671

ABSTRACT

BACKGROUND: Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS: In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified ß-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS: We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.


Subject(s)
Eutrophication , Phytoplankton , Phytoplankton/genetics , Phytoplankton/metabolism , North Sea , Plankton/genetics , Polysaccharides/metabolism , Bacteria/genetics , Bacteria/metabolism
20.
Plant J ; 115(3): 788-802, 2023 08.
Article in English | MEDLINE | ID: mdl-37114596

ABSTRACT

The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs) comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERECTA-LIKE 2 (ERL2) controls epidermal patterning, inflorescence architecture, and stomata development and patterning. These proteins are reported to be plasma membrane associated. Here we show that the er/erl1/erl2 mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. The ERf kinase domains were found to localize to the nucleus where they interact with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. Similar to swi3c and brm plants with inactivated subunits of SWI/SNF CRCs, it also does not accumulate DELLA RGA and GAI proteins. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. The identified correlation between DELLA overaccumulation and SWI3B proteasomal degradation, and the physical interaction of SWI3B with DELLA proteins indicate an important role of SWI3B-containing SWI/SNF CRCs in gibberellin signaling. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in the transcriptional control of gene expression, and observed similar features for human HER2 (epidermal growth family receptor member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Gibberellins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL