Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pediatr ; 262: 113563, 2023 11.
Article in English | MEDLINE | ID: mdl-37329979

ABSTRACT

OBJECTIVE: To determine whether transcutaneous auricular vagus nerve stimulation (taVNS) paired with twice daily bottle feeding increases the volume of oral feeds and white matter neuroplasticity in term-age-equivalent infants failing oral feeds and determined to need a gastrostomy tube. STUDY DESIGN: In this prospective, open-label study, 21 infants received taVNS paired with 2 bottle feeds for 2 - 3 weeks (2x). We compared 1) increase oral feeding volumes with 2x taVNS and previously reported once daily taVNS (1x) to determine a dose response, 2) number of infants who attained full oral feeding volumes, and 3) diffusional kurtosis imaging and magnetic resonance spectroscopy before and after treatment by paired t tests. RESULTS: All 2x taVNS treated infants significantly increased their feeding volumes compared with 10 days before treatment. Over 50% of 2x taVNS infants achieved full oral feeds but in a shorter time than 1x cohort (median 7 days [2x], 12.5 days [1x], P < .05). Infants attaining full oral feeds showed greater increase in radial kurtosis in the right corticospinal tract at the cerebellar peduncle and external capsule. Notably, 75% of infants of diabetic mothers failed full oral feeds, and their glutathione concentrations in the basal ganglia, a measure of central nervous system oxidative stress, were significantly associated with feeding outcome. CONCLUSIONS: In infants with feeding difficulty, increasing the number of daily taVNS-paired feeding sessions to twice-daily significantly accelerates response time but not the overall response rate of treatment. taVNS was associated with white matter motor tract plasticity in infants able to attain full oral feeds. TRIAL REGISTRATION: Clinicaltrials.gov (NCT04643808).


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , White Matter , Female , Humans , Infant , White Matter/diagnostic imaging , Vagus Nerve Stimulation/methods , Gastrostomy , Prospective Studies , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology
2.
Bioelectron Med ; 8(1): 13, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36002874

ABSTRACT

BACKGROUND: Although the coronavirus disease 19 (COVID-19) pandemic has now impacted the world for over two years, the persistent secondary neuropsychiatric effects are still not fully understood. These "long COVID" symptoms, also referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), can persist for months after infection without any effective treatments. Long COVID involves a complex heterogenous symptomology and can lead to disability and limit work. Long COVID symptoms may be due to sustained inflammatory responses and prolonged immune response after infection. Interestingly, vagus nerve stimulation (VNS) may have anti-inflammatory effects, however, until recently, VNS could not be self-administered, at-home, noninvasively. METHODS: We created a double-blind, noninvasive transcutaneous auricular VNS (taVNS) system that can be self-administered at home with simultaneous remote monitoring of physiological biomarkers and video supervision by study staff. Subsequently, we carried out a pilot (n = 13) randomized, sham-controlled, trial with this system for four weeks to treat nine predefined long covid symptoms (anxiety, depression, vertigo, anosmia, ageusia, headaches, fatigue, irritability, brain fog). No in-person patient contact was needed, with informed consent, trainings, ratings, and all procedures being conducted remotely during the pandemic (2020-2021) and equipment being shipped to individuals' homes. This trial was registered on ClinicalTrials.gov under the identifier: NCT04638673 registered November 20, 2020. RESULTS: Four-weeks of at-home self-administered taVNS (two, one-hour sessions daily, delivered at suprathreshold intensities) was feasible and safe. Although our trial was not powered to determine efficacy as an intervention in a heterogenous population, the trends in the data suggest taVNS may have a mild to moderate effect in reducing mental fatigue symptoms in a subset of individuals. CONCLUSIONS: This innovative study demonstrates the safety and feasibility of supervised self-administered taVNS under a fully contactless protocol and suggests that future studies can safely investigate this novel form of brain stimulation at-home for a variety of neuropsychiatric and motor recovery applications.

3.
Res Sq ; 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35765566

ABSTRACT

Background Although the coronavirus disease 19 (COVID-19) pandemic has now impacted the world for over two years, the persistent secondary neuropsychiatric effects are still not fully understood. These "long COVID" symptoms, also referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), can persist for months after infection without any effective treatments. Long COVID involves a complex heterogenous symptomology and can lead to disability and limit work. Long COVID symptoms may be due to sustained inflammatory responses and prolonged immune response after infection. Interestingly, vagus nerve stimulation (VNS) may have anti-inflammatory effects, however, until recently, VNS could not be self-administered, at-home, noninvasively. Methods We created a double-blind, noninvasive transcutaneous auricular VNS (taVNS) system that can be self-administered at home with simultaneous remote monitoring of physiological biomarkers and video supervision by study staff. Subsequently, we carried out a pilot (n = 13) randomized, sham-controlled, trial with this system for four weeks to treat nine predefined long covid symptoms (anxiety, depression, vertigo, anosmia, ageusia, headaches, fatigue, irritability, brain fog). No in-person patient contact was needed, with informed consent, trainings, ratings, and all procedures being conducted remotely during the pandemic (2020-2021) and equipment being shipped to individuals' homes. This trial was registered onClinicalTrials.gov under the identifier: NCT04638673. Results Four-weeks of at-home self-administered taVNS (two, one-hour sessions daily, delivered at suprathreshold intensities) was feasible and safe. Although our trial was not powered to determine efficacy as an intervention in a heterogenous population, the trends in the data suggest taVNS may have a mild to moderate effect in reducing mental fatigue symptoms in a subset of individuals. This innovative study demonstrates the safety and feasibility of supervised self-administered taVNS under a fully contactless protocol and suggests that future studies can safely investigate this novel form of brain stimulation at-home for a variety of neuropsychiatric and motor recovery applications.

4.
Brain Stimul ; 15(3): 761-768, 2022.
Article in English | MEDLINE | ID: mdl-35561963

ABSTRACT

BACKGROUND: Both activated by environmental odorants, there is a clear role for the intranasal trigeminal and olfactory nerves in smell function. Unfortunately, our ability to perceive odorants decreases with age or with injury, and limited interventions are available to treat smell loss. OBJECTIVE: We investigated whether electrical stimulation of the trigeminal nerve via trigeminal nerve stimulation (TNS) or transcranial direct current stimulation (tDCS) modulates odor sensitivity in healthy individuals. METHODS: We recruited 20 healthy adults (12 Female, mean age = 27) to participate in this three-visit, randomized, double-blind, sham-controlled trial. Participants were randomized to receive one of three stimulation modalities (TNS, tDCS, or sham) during each of their visits. Odor detection thresholds were obtained at baseline, immediately post-intervention, and 30-min post-intervention. Furthermore, participants were asked to complete a sustained attention task and mood assessments before odor detection testing. RESULTS: Findings reveal a timeXcondition interaction for guaiacol (GUA) odorant detection thresholds (F (3.188, 60.57) = 3.833, P = 0.0125), but not phenyl ethyl alcohol (PEA) odorant thresholds. At 30-min post-stimulation, both active TNS and active tDCS showed significantly increased sensitivity to GUA compared to sham TNS (Sham TNS = -8.30% vs. Active TNS = 9.11%, mean difference 17.43%, 95% CI 5.674 to 29.18, p = 0.0044; Sham TNS = -8.30% vs. Active tDCS = 13.58%, mean difference 21.89%, 95% CI 10.47 to 33.32, p = 0.0004). CONCLUSION: TNS is a safe, simple, noninvasive method for boosting olfaction. Future studies should investigate the use of TNS on smell function across different stimulation parameters, odorants, and patient populations.


Subject(s)
Smell , Transcranial Direct Current Stimulation , Adult , Double-Blind Method , Electric Stimulation , Female , Humans , Transcranial Direct Current Stimulation/methods , Trigeminal Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...