Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cell Death Dis ; 15(4): 273, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632238

ABSTRACT

Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFß activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFNγ and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.


Subject(s)
Apoptosis , Glioblastoma , Glioma , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Apoptosis/genetics , Cytokines , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/genetics , Glioma/immunology , Glioma/metabolism , Glioma/pathology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha
2.
Cell Chem Biol ; 31(4): 729-742.e13, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38492573

ABSTRACT

The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.


Subject(s)
Antimalarials , Plasmodium falciparum , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteome/metabolism , Antimalarials/chemistry , HSP90 Heat-Shock Proteins , Molecular Chaperones/metabolism
3.
Cell Chem Biol ; 31(3): 465-476.e12, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37918401

ABSTRACT

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.


Subject(s)
Borrelia burgdorferi , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Verteporfin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Molecular Chaperones/metabolism
4.
Sci Rep ; 13(1): 22873, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38129491

ABSTRACT

Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1ß. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1ß and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Female , Animals , Mice , Leukocytes, Mononuclear , Membrane Proteins , Interleukin-6 , Cytokines
5.
Pharmacol Res Perspect ; 11(4): e01124, 2023 08.
Article in English | MEDLINE | ID: mdl-37564034

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by hyperactive immune cells within the joints, which leads to inflammation, bone degeneration, and chronic pain. For several decades, frontline immunomodulators such as the anti-tumor necrosis factor (TNF) biologics adalimumab (Humira), etanercept (Enbrel), and infliximab (Remicade) have successfully managed disease progression for many patients. However, over time, patients become refractory to these treatments requiring chronic disease to be managed with conventional and more problematic disease modifying antirheumatic drugs such as methotrexate and hydroxychloroquine, and corticosteroids. Due to the large proportion of patients who continue to fail on frontline biologic therapies, there remains an unmet need to derive novel alternative targets with improved efficacy and safety profiles to treat RA. Recent advances in the field have defined novel targets that play important roles in RA pathology, including the Janus activated kinase (JAK) and transforming growth factor beta activated kinase-1 (TAK1). Although three inhibitors of the JAK signaling pathway have been approved for the treatment of moderately to severely active RA in patients who failed on one or more anti-TNFs, at present, no FDA approved TAK1 treatments exist. Our recent discovery of a highly potent and selective, orally bioavailable TAK1 inhibitor has provided insight into the therapeutic potential of this protein kinase as a novel target for RA. Here, we show the distinct cytokine signaling of tofacitnib (Xeljanz; JAK1/3 inhibitor) compared to HS-276 (TAK1 inhibitor) in lipopolysaccharide (LPS) challenged THP-1 cells. Furthermore, in the collagen induced arthritis pre-clinical mouse model of RA, both tofacintib and HS-276 attenuated disease activity score and inflammatory cytokines in the serum. Overall, our results delineate the distinct cytokine signaling of JAK1/3 and TAK1 targeted therapies in vitro and in vivo and suggest that selective TAK1 inhibitors may provide superior therapeutic relief in RA with fewer adverse events.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Animals , Mice , Arthritis, Rheumatoid/drug therapy , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Etanercept/therapeutic use , Adalimumab , Infliximab/therapeutic use , Cytokines/metabolism , Signal Transduction
6.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37306632

ABSTRACT

Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-ß and TLR signaling, TGF-ß-activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276. Inhibiting TAK1 abrogated TGF-ß1 stimulation of collagen synthesis and myofibroblasts differentiation in healthy skin fibroblasts, and it ameliorated constitutive activation of SSc skin fibroblasts. Moreover, treatment with HS-276 prevented dermal and pulmonary fibrosis and reduced the expression of profibrotic mediators in bleomycin-treated mice. Importantly, initiating HS-276 treatment even after fibrosis was already established prevented its progression in affected organs. Together, these findings implicate TAK1 in the pathogenesis of SSc and identify targeted TAK1 inhibition using a small molecule as a potential strategy for the treatment of SSc and other fibrotic diseases.


Subject(s)
Pulmonary Fibrosis , Scleroderma, Systemic , Mice , Animals , Fibrosis , Scleroderma, Systemic/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/metabolism , Fibroblasts/metabolism
7.
J Pain ; 24(9): 1633-1644, 2023 09.
Article in English | MEDLINE | ID: mdl-37121498

ABSTRACT

The origin of chronic pain is linked to inflammation, characterized by increased levels of proinflammatory cytokines in local tissues and systemic circulation. Transforming growth factor beta-activated kinase 1 (TAK1) is a key regulator of proinflammatory cytokine signaling that has been well characterized in the context of cancer and autoimmune disorders, yet its role in chronic pain is less clear. Here, we evaluated the ability of our TAK1 small-molecule inhibitor, takinib, to attenuate pain and inflammation in preclinical models of inflammatory, neuropathic, and primary pain. Inflammatory, neuropathic, and primary pain was modeled using intraplantar complete Freund's adjuvant (CFA), chronic constriction injury (CCI), and systemic delivery of the catechol-O-methyltransferase (COMT) inhibitor OR486, respectively. Behavioral responses evoked by mechanical and thermal stimuli were evaluated in separate groups of mice receiving takinib or vehicle prior to pain induction (baseline) and over 12 days following CFA injection, 4 weeks following CCI surgery, and 6 hours following OR486 delivery. Hindpaw edema was also measured prior to and 3 days following CFA injection. Upon termination of behavioral experiments, dorsal root ganglia (DRG) were collected to measure cytokines. We also evaluated the ability of takinib to modulate nociceptor activity via in vitro calcium imaging of neurons isolated from the DRG of Gcamp3 mice. In all 3 models, TAK1 inhibition significantly reduced hypersensitivity to mechanical and thermal stimuli and expression of proinflammatory cytokines in DRG. Furthermore, TAK1 inhibition significantly reduced the activity of tumor necrosis factor (TNF)-primed/capsaicin-evoked DRG nociceptive neurons. Overall, our results support the therapeutic potential of TAK1 as a novel drug target for the treatment of chronic pain syndromes with different etiologies. PERSPECTIVE: This article reports the therapeutic potential of TAK1 inhibitors for the treatment of chronic pain. This new treatment has the potential to provide a greater therapeutic offering to physicians and patients suffering from chronic pain as well as reduce the dependency on opioid-based pain treatments.


Subject(s)
Chronic Pain , Animals , Mice , Catechol O-Methyltransferase , Chronic Pain/complications , Cytokines/metabolism , Disease Models, Animal , Freund's Adjuvant/toxicity , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Inflammation/complications , Rats, Sprague-Dawley , Rats
8.
Cancers (Basel) ; 14(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36497243

ABSTRACT

Ductal carcinoma in situ (DCIS) of the breast is often managed by lumpectomy and radiation or mastectomy, despite its indolent features. Effective non-invasive treatment strategies could reduce the morbidity of DCIS treatment. We have exploited the high heat shock protein 90 (HSP90) activity in premalignant and malignant breast disease to non-invasively detect and selectively ablate tumors using photodynamic therapy (PDT). PDT with the HSP90-targeting photosensitizer, HS201, can not only ablate invasive breast cancers (BCs) while sparing non-tumor tissue, but also induce antitumor immunity. We hypothesized that HS201-PDT would both non-invasively ablate DCIS and prevent progression to invasive BC. We tested in vitro selective uptake and photosensitivity of HS201 in DCIS cell lines compared to the non-selective parental verteporfin, and assessed in vivo antitumor efficacy in mammary fat pad and intraductal implantation models. Selective uptake of HS201 enabled treatment of intraductal lesions while minimizing toxicity to non-tumor tissue. The in vivo activity of HS201-PDT was also tested in female MMTV-neu mice prior to the development of spontaneous invasive BC. Mice aged 5 months were administered HS201, and their mammary glands were exposed to laser light. HS201-PDT delayed the emergence of invasive BC, significantly prolonged disease-free survival (DFS) (p = 0.0328) and tended to improve overall survival compared to the no-treatment control (p = 0.0872). Systemic administration of anti-PD-L1 was combined with HS201-PDT and was tested in a more aggressive spontaneous tumor model, HER2delta16 transgenic mice. A single PDT dose combined with anti-PD-L1 improved DFS compared to the no-treatment control, which was significantly improved with repetitive HS201-PDT given with anti-PD-L1 (p = 0.0319). In conclusion, a non-invasive, skin- and tissue-sparing PDT strategy in combination with anti-PD-L1 antibodies effectively prevented malignant progression of DCIS to invasive BC. This non-invasive treatment strategy of DCIS may be safe and effective, while providing an option to reduce the morbidity of current conventional treatment for patients with DCIS. Clinical testing of HS201 is currently underway.

9.
Sci Rep ; 12(1): 18091, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302951

ABSTRACT

Heat shock protein 90 (Hsp90) maintains cellular proteostasis during stress and has been under investigation as a therapeutic target in cancer for over two decades. We and others have identified a membrane expressed form of Hsp90 (mHsp90) that previously appeared to be restricted to rapidly proliferating cells exhibiting a metastatic phenotype. Here, we used HS-131, a fluor-tethered mHsp90 inhibitor, to quantify the effect of T cell activation on the expression of mHsp90 in human and mouse T cells. In cell-based assays, stimulation of human T cells induced a 20-fold increase in mHsp90 expression at the plasma membrane, suggesting trafficking of mHsp90 is regulated by TCR and inflammatory mediated signaling. Following injection of HS-131 in mouse models of human rheumatoid arthritis and inflammatory bowel disease, we detected localization of the probe at sites of active disease, consistent with immune cell invasion. Moreover, despite rapid hepatobiliary clearance, HS-131 demonstrated efficacy in reducing the mean clinical score in the CIA arthritis model. Our results suggest mHsp90 expression on T cells is a molecular marker of T cell activation and potentially a therapeutic target for chronic diseases such as rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Lymphocyte Activation , Mice , Animals , Humans , HSP90 Heat-Shock Proteins/metabolism , T-Lymphocytes , Arthritis, Rheumatoid/drug therapy , Disease Models, Animal
10.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36171008

ABSTRACT

BACKGROUND: We previously demonstrated potent antitumor activity against human breast cancer xenografts using photodynamic therapy (PDT) targeting a novel tumor-specific photosensitizer (HS201), which binds heat shock protein 90 (HS201-PDT). However, induction of systemic antitumor immunity by HS201-PDT alone or by the combination strategy with immune checkpoint blockade has yet to be determined. METHODS: Using unilateral and bilateral implantation models of syngeneic breast tumors (E0771, MM3MG-HER2, and JC-HER3) in mice, we assessed whether HS201-PDT could induce local and systemic antitumor immunity. In an attempt to achieve a stronger abscopal effect for distant tumors, the combination strategy with anti-PD-L1 antibody was tested. Tumor-infiltrating leukocytes were analyzed by single cell RNA-sequencing and receptor-ligand interactome analysis to characterize in more detailed the mechanisms of action of the treatment and key signaling pathways involved. RESULTS: HS201-PDT demonstrated greater tumor control and survival in immune competent mice than in immunocompromised mice, suggesting the role of induced antitumor immunity; however, survival was modest and an abscopal effect on distant implanted tumor was weak. A combination of HS201-PDT with anti-PD-L1 antibody demonstrated the greatest antigen-specific immune response, tumor growth suppression, prolonged mouse survival time and abscopal effect. The most significant increase of intratumoral, activated CD8+T cells and decrease of exhausted CD8+T cells occurred following combination treatment compared with HS201-PDT monotherapy. Receptor-ligand interactome analysis showed marked enhancement of several pathways, such as CXCL, GALECTIN, GITRL, PECAM1 and NOTCH, associated with CD8+T cell activation in the combination group. Notably, the expression of the CXCR3 gene signature was the highest in the combination group, possibly explaining the enhanced tumor infiltration by T cells. CONCLUSIONS: The increased antitumor activity and upregulated CXCR3 gene signature induced by the combination of anti-PD-L1 antibody with HS201-PDT warrants the clinical testing of HS201-PDT combined with PD-1/PD-L1 blockade in patients with breast cancer, and the use of the CXCR3 gene signature as a biomarker.


Subject(s)
Breast Neoplasms , Photochemotherapy , Animals , Cell Line, Tumor , Female , Galectins , Heat-Shock Proteins , Humans , Immune Checkpoint Inhibitors , Ligands , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Programmed Cell Death 1 Receptor , RNA
11.
ACS Chem Biol ; 17(3): 536-544, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35234444

ABSTRACT

Selective targeting of TNF in inflammatory diseases such as rheumatoid arthritis (RA) has provided great therapeutic benefit to many patients with chronic RA. Although these therapies show initially high response rates, their therapeutic benefit is limited over the lifetime of the patient due to the development of antidrug antibodies that preclude proper therapeutic benefits. As a result, patients often return to more problematic therapies such as methotrexate or hydroxychloroquine, which carry long-term side effects. Thus, there is an unmet medical need to develop alternative treatments enabling patients to regain the benefits of selectively targeting TNF functions in vivo. The protein kinase TAK1 is a critical signaling node in TNF-mediated intracellular signaling, regulating downstream NF-κß activation, leading to the transcription of inflammatory cytokines. TAK1 inhibitors have been developed but have been limited in their clinical advancement due to the lack of selectivity within the human kinome and, most importantly, lack of oral bioavailability. Using a directed medicinal chemistry approach, driven by the cocrystal structure of the TAK1 inhibitor takinib, we developed HS-276, a potent (Ki = 2.5 nM) and highly selective orally bioavailable TAK1 inhibitor. Following oral administration in normal mice, HS-276 is well tolerated (MTD >100 mg/Kg), displaying >95% bioavailability with µM plasma levels. The in vitro and in vivo efficacy of HS-276 showed significant inhibition of TNF-mediated cytokine profiles, correlating with significant attenuation of arthritic-like symptoms in the CIA mouse model of inflammatory RA. Our studies reinforce the hypothesis that TAK1 can be safely targeted pharmacologically to provide an effective alternative to frontline biologic-based RA therapeutics.


Subject(s)
Arthritis, Rheumatoid , MAP Kinase Kinase Kinases , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Mice , Signal Transduction
12.
Pain ; 163(6): 1091-1101, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34995041

ABSTRACT

ABSTRACT: Heat shock protein 90 (Hsp90) is a ubiquitously expressed integral cellular protein essential for regulating proteomic stress. Previous research has shown that Hsp90 regulates critical signaling pathways underlying chronic pain and inflammation. Recent discovery of membrane bound ectopic Hsp90 (eHsp90) on tumor cells has shown that Hsp90 induction to the plasma membrane can stabilize disease-relevant proteins. Here, we characterize eHsp90 expression in a mouse model of inflammation and demonstrate its role in nociception and pain. We found that intraplantar complete Freund adjuvant (CFA) induced robust expression of eHsp90 on the cell membranes of primary afferent nociceptors located in the L3-L5 dorsal root ganglia (DRG), bilaterally, with minimal to no expression in other tissues. Complete Freund adjuvant-induced increases in eHsp90 expression on lumbar DRG were significantly greater in females compared with males. Furthermore, exogenous Hsp90 applied to primary Pirt-GCaMP3 nociceptors induced increases in calcium responses. Responses were estrogen-dependent such that greater activity was observed in female or estrogen-primed male nociceptors compared with unprimed male nociceptors. Treatment of mice with the selective eHsp90 inhibitor HS-131 (10 nmol) significantly reversed CFA-induced mechanical pain, thermal heat pain, and hind paw edema. Notably, a higher dose (20 nmol) of HS-131 was required to achieve analgesic and anti-inflammatory effects in females. Here, we provide the first demonstration that inflammation leads to an upregulation of eHsp90 on DRG nociceptors in a sex-dependent manner and that inhibition of eHsp90 reduces nociceptor activity, pain, and inflammation. Thus, eHsp90 represents a novel therapeutic axis for the development of gender-tailored treatments for inflammatory pain.


Subject(s)
HSP90 Heat-Shock Proteins , Nociceptors , Proteomics , Animals , Estrogens/therapeutic use , Female , Freund's Adjuvant/adverse effects , Ganglia, Spinal/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Inflammation/metabolism , Male , Mice , Nociceptors/physiology , Pain/drug therapy
13.
Mol Cancer Ther ; 21(1): 217-226, 2022 01.
Article in English | MEDLINE | ID: mdl-34675120

ABSTRACT

A noninvasive test to discriminate indolent prostate cancers from lethal ones would focus treatment where necessary while reducing overtreatment. We exploited the known activity of heat shock protein 90 (Hsp90) as a chaperone critical for the function of numerous oncogenic drivers, including the androgen receptor and its variants, to detect aggressive prostate cancer. We linked a near-infrared fluorescing molecule to an HSP90 binding drug and demonstrated that this probe (designated HS196) was highly sensitive and specific for detecting implanted prostate cancer cell lines with greater uptake by more aggressive subtypes. In a phase I human study, systemically administered HS196 could be detected in malignant nodules within prostatectomy specimens. Single-cell RNA sequencing identified uptake of HS196 by malignant prostate epithelium from the peripheral zone (AMACR+ERG+EPCAM+ cells), including SYP+ neuroendocrine cells that are associated with therapeutic resistance and metastatic progression. A theranostic version of this molecule is under clinical testing.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, SCID , Prostatic Neoplasms/pathology
14.
iScience ; 24(12): 103412, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34786537

ABSTRACT

Currently available SARS-CoV-2 therapeutics are targeted toward moderately to severely ill patients and require intravenous infusions, with limited options for exposed or infected patients with no or mild symptoms. Although vaccines have demonstrated protective efficacy, vaccine hesitancy and logistical distribution challenges will delay their ability to end the pandemic. Hence, there is a need for rapidly translatable, easy-to-administer-therapeutics that can prevent SARS-CoV-2 disease progression, when administered in the early stages of infection. We demonstrate that an orally bioavailable Hsp90 inhibitor, SNX-5422, currently in clinical trials as an anti-cancer therapeutic, inhibits SARS-CoV-2 replication in vitro at a high selectivity index. SNX-5422 treatment of human primary airway epithelial cells dampened expression of inflammatory pathways previously associated with poor SARS-CoV-2 disease outcomes. In addition, SNX-5422 interrupted expression of host factors demonstrated to be crucial for SARS-CoV-2 replication. Development of SNX-5422 as SARS-CoV-2-early-therapy will dampen disease severity, resulting in better clinical outcomes and reduced hospitalizations.

15.
Biomed Opt Express ; 12(4): 2299-2311, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33996230

ABSTRACT

Overexpression of heat shock protein 90 (Hsp90) on the surface of breast cancer cells makes it an attractive molecular biomarker for breast cancer diagnosis. Before a ubiquitous diagnostic method can be established, an understanding of the systematic errors in Hsp90-based imaging is essential. In this study, we investigated three factors that may influence the sensitivity of ex vivo Hsp90 molecular imaging: time-dependent tissue viability, nonspecific diffusion of an Hsp90 specific probe (HS-27), and contact-based imaging. These three factors will be important considerations when designing any diagnostic imaging strategy based on fluorescence imaging of a molecular target on tissue samples.

16.
Sci Transl Med ; 12(574)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328331

ABSTRACT

Heat shock factor 1 (HSF1) is a cellular stress-protective transcription factor exploited by a wide range of cancers to drive proliferation, survival, invasion, and metastasis. Nuclear HSF1 abundance is a prognostic indicator for cancer severity, therapy resistance, and shortened patient survival. The HSF1 gene was amplified, and nuclear HSF1 abundance was markedly increased in prostate cancers and particularly in neuroendocrine prostate cancer (NEPC), for which there are no available treatment options. Despite genetic validation of HSF1 as a therapeutic target in a range of cancers, a direct and selective small-molecule HSF1 inhibitor has not been validated or developed for use in the clinic. We described the identification of a direct HSF1 inhibitor, Direct Targeted HSF1 InhiBitor (DTHIB), which physically engages HSF1 and selectively stimulates degradation of nuclear HSF1. DTHIB robustly inhibited the HSF1 cancer gene signature and prostate cancer cell proliferation. In addition, it potently attenuated tumor progression in four therapy-resistant prostate cancer animal models, including an NEPC model, where it caused profound tumor regression. This study reports the identification and validation of a direct HSF1 inhibitor and provides a path for the development of a small-molecule HSF1-targeted therapy for prostate cancers and other therapy-resistant cancers.


Subject(s)
Heat Shock Transcription Factors/antagonists & inhibitors , Prostatic Neoplasms , Animals , Cell Nucleus/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
17.
Sci Adv ; 6(50)2020 Dec.
Article in English | MEDLINE | ID: mdl-33310841

ABSTRACT

The Younger Dryas (YD) was a period of rapid climate cooling that occurred at the end of the last glaciation. Here, we present the first palaeoglacier-derived reconstruction of YD precipitation across Europe, determined from 122 reconstructed glaciers and proxy atmospheric temperatures. Positive precipitation anomalies (YD versus modern) are found along much of the western seaboard of Europe and across the Mediterranean. Negative precipitation anomalies occur over the Fennoscandian ice sheet, the North European Plain, and as far south as the Alps. This is consistent with a more southerly and zonal storm track, which is linked to a concomitant southern location of the Polar Frontal Jet Stream, generating cold air outbreaks and enhanced cyclogenesis, especially over the eastern Mediterranean. This atmospheric configuration resembles the modern Scandinavian (SCAND) circulation over Europe (a blocking high pressure over Scandinavia pushing storm tracks south and east), and by analogy, a seasonally varying palaeoprecipitation pattern is interpreted.

18.
Oncotarget ; 11(21): 1961-1970, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32523651

ABSTRACT

Transforming growth factor beta-activated kinase 1 (TAK1) has been implicated for its role in inflammatory signaling and as an important mediator of cellular apoptosis and necroptosis in various cell types. Our recent discovery of a first-in-class, potent and selective TAK1 inhibitor, takinib, represents a novel pharmacological tool to evaluate TAK1's role in cancer. In this study we evaluated the potential therapeutic capacity of TAK1 inhibition on tumor growth and on tumor microenvironment remodeling. In a screen of 16 cancer cell lines, takinib in combination with tumor necrosis factor (TNF) was found to induce cell death (>20%) in 6 out of 16 cell lines. Furthermore, knocking out of TAK1 in MDA-MB-231 cells dramatically increased their sensitization to TNF-mediated apoptosis. In vivo xenographs of MDA-MB-231 TAK1KO tumors displayed delayed tumor growth and increased overall survival compared to TAK1WT controls. Histological and proteomic analysis of TAK1KO tumors showed altered angiogenic signaling and inflammatory signaling via immune cells. Overall, these findings suggest that the targeting of TAK1 in immune mediated cancers may be a novel therapeutic axis.

19.
Commun Biol ; 3(1): 226, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385408

ABSTRACT

Photodynamic therapy (PDT) ablates malignancies by applying focused near-infrared (nIR) light onto a lesion of interest after systemic administration of a photosensitizer (PS); however, the accumulation of existing PS is not tumor-exclusive. We developed a tumor-localizing strategy for PDT, exploiting the high expression of heat shock protein 90 (Hsp90) in cancer cells to retain high concentrations of PS by tethering a small molecule Hsp90 inhibitor to a PS (verteporfin, VP) to create an Hsp90-targeted PS (HS201). HS201 accumulates to a greater extent than VP in breast cancer cells both in vitro and in vivo, resulting in increased treatment efficacy of HS201-PDT in various human breast cancer xenografts regardless of molecular and clinical subtypes. The therapeutic index achieved with Hsp90-targeted PDT would permit treatment not only of localized tumors, but also more diffusely infiltrating processes such as inflammatory breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Photochemotherapy/statistics & numerical data , Photosensitizing Agents/administration & dosage , Verteporfin/administration & dosage , Cell Line, Tumor , HSP90 Heat-Shock Proteins/administration & dosage , HSP90 Heat-Shock Proteins/radiation effects , Humans , MCF-7 Cells
20.
Br J Gen Pract ; 70(692): 127, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32107233
SELECTION OF CITATIONS
SEARCH DETAIL
...