Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4809, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558657

ABSTRACT

HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design.


Subject(s)
Histocompatibility Antigens Class I , Saccharomyces cerevisiae , Humans , Ligands , Saccharomyces cerevisiae/metabolism , Protein Binding , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Killer Cells, Natural , HLA-E Antigens
3.
J Biol Chem ; 299(3): 102913, 2023 03.
Article in English | MEDLINE | ID: mdl-36649909

ABSTRACT

Yeast display can serve as a powerful tool to assess the binding of peptides to the major histocompatibility complex (pMHC) and pMHC-T-cell receptor binding. However, this approach is often limited by the need to optimize MHC proteins for yeast surface expression, which can be laborious and may not yield productive results. Here we present a second-generation yeast display platform for class II MHC molecules (MHC-II), which decouples MHC-II expression from yeast-expressed peptides, referred to as "peptide display." Peptide display obviates the need for yeast-specific MHC optimizations and increases the scale of MHC-II alleles available for use in yeast display screens. Because MHC identity is separated from the peptide library, a further benefit of this platform is the ability to assess a single library of peptides against any MHC-II. We demonstrate the utility of the peptide display platform across MHC-II proteins, screening HLA-DR, HLA-DP, and HLA-DQ alleles. We further explore parameters of selections, including reagent dependencies, MHC avidity, and use of competitor peptides. In summary, this approach presents an advance in the throughput and accessibility of screening peptide-MHC-II binding.


Subject(s)
Peptides , Saccharomyces cerevisiae , Epitopes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptides/metabolism , Histocompatibility Antigens Class II/metabolism , Peptide Library
4.
Elife ; 112022 07 04.
Article in English | MEDLINE | ID: mdl-35781135

ABSTRACT

T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by major histocompatibility complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high-throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , Peptides/metabolism , Protein Binding , Proteome/metabolism , SARS-CoV-2 , Saccharomyces cerevisiae/metabolism
5.
Front Immunol ; 13: 886683, 2022.
Article in English | MEDLINE | ID: mdl-35812387

ABSTRACT

While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Animals , Antigens, Neoplasm , Cross Reactions , Immunotherapy , Melanoma/therapy , Mice
6.
Methods Mol Biol ; 2491: 263-291, 2022.
Article in English | MEDLINE | ID: mdl-35482196

ABSTRACT

T cells detect peptide antigens presented by major histocompatibility complex (MHC) proteins via their T cell receptor (TCR). The sequence diversity of possible antigens, with trillions of potential peptide-MHC targets, makes it challenging to study, characterize, and manipulate the peptide repertoire of a given TCR. Yeast display has been utilized to study the interactions between peptide-MHCs and T cell receptors to facilitate high-throughput screening of peptide-MHC libraries. Here we present insights on designing and validating a peptide-MHC yeast display construct, designing and constructing peptide libraries, conducting selections, and preparing, processing, and analyzing peptide library sequencing data. Applications for this approach are broad, including characterizing peptide-MHC recognition profiles for a TCR, screening for high-affinity mimotopes of known TCR-binding peptides, and identifying natural ligands of TCRs from expanded T cells.


Subject(s)
Peptide Library , Saccharomyces cerevisiae , Antigens/metabolism , Ligands , Peptides/chemistry , Receptors, Antigen, T-Cell/metabolism , Saccharomyces cerevisiae/metabolism
7.
Bioinformatics ; 37(19): 3160-3167, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-33705522

ABSTRACT

SUMMARY: T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Nat Commun ; 11(1): 4414, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887877

ABSTRACT

CD4+ helper T cells contribute important functions to the immune response during pathogen infection and tumor formation by recognizing antigenic peptides presented by class II major histocompatibility complexes (MHC-II). While many computational algorithms for predicting peptide binding to MHC-II proteins have been reported, their performance varies greatly. Here we present a yeast-display-based platform that allows the identification of over an order of magnitude more unique MHC-II binders than comparable approaches. These peptides contain previously identified motifs, but also reveal new motifs that are validated by in vitro binding assays. Training of prediction algorithms with yeast-display library data improves the prediction of peptide-binding affinity and the identification of pathogen-associated and tumor-associated peptides. In summary, our yeast-display-based platform yields high-quality MHC-II-binding peptide datasets that can be used to improve the accuracy of MHC-II binding prediction algorithms, and potentially enhance our understanding of CD4+ T cell recognition.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Oligopeptides , Binding Sites , CD4-Positive T-Lymphocytes/immunology , Cell Surface Display Techniques , Databases, Protein , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Genes, MHC Class II , Histocompatibility Antigens Class II/metabolism , Humans , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding/genetics , Receptors, Antigen, T-Cell , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...