Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832894

ABSTRACT

Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.

2.
Mol Genet Metab ; 139(4): 107653, 2023 08.
Article in English | MEDLINE | ID: mdl-37463544

ABSTRACT

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.


Subject(s)
Homocystinuria , Humans , Mice , Animals , Homocystinuria/drug therapy , Homocystinuria/genetics , Methionine/metabolism , Homocysteine , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Racemethionine , Gastrointestinal Tract/metabolism
3.
J Inherit Metab Dis ; 46(6): 1089-1103, 2023 11.
Article in English | MEDLINE | ID: mdl-37494004

ABSTRACT

Maple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment. Given the lack of therapeutic options for MSUD patients, we sought to develop an oral enzyme therapy that can degrade leucine within the gastrointestinal tract prior to its systemic absorption and thus enable patients to maintain acceptable plasma leucine levels while broadening their access to natural protein. We identified a highly active leucine decarboxylase enzyme from Planctomycetaceae bacterium and used directed evolution to engineer the enzyme for stability to gastric and intestinal conditions. Following high-throughput screening of over 12 000 enzyme variants over 9 iterative rounds of evolution, we identified a lead variant, LDCv10, which retains activity following simulated gastric or intestinal conditions in vitro. In intermediate MSUD mice or healthy nonhuman primates given a whey protein meal, oral treatment with LDCv10 suppressed the spike in plasma leucine and KIC and reduced the leucine area under the curve in a dose-dependent manner. Reduction in plasma leucine correlated with decreased brain leucine levels following oral LDCv10 treatment. Collectively, these data support further development of LDCv10 as a potential new therapy for MSUD patients.


Subject(s)
Maple Syrup Urine Disease , Humans , Mice , Animals , Leucine , Amino Acids, Branched-Chain , Proteins , Enzyme Therapy , Primates/metabolism
4.
Sci Rep ; 13(1): 4748, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959353

ABSTRACT

Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.


Subject(s)
Fabry Disease , Humans , Mice , Animals , Fabry Disease/drug therapy , Fabry Disease/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Kidney/metabolism , Disease Models, Animal , Fibroblasts/metabolism
5.
Curr Opin Chem Biol ; 64: 38-47, 2021 10.
Article in English | MEDLINE | ID: mdl-33933937

ABSTRACT

Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist. Here, we review recent successes and challenges of protein engineering for optimized therapeutic efficacy.


Subject(s)
Protein Engineering , Proteins , Amino Acid Sequence , Models, Molecular , Proteins/chemistry
6.
Curr Opin Biotechnol ; 69: 182-190, 2021 06.
Article in English | MEDLINE | ID: mdl-33517157

ABSTRACT

Multi-step, biocatalytic cascades are poised to lead to further adoption of enzymes by the chemical industry. Over the past twenty years, the promise of in vitro enzyme evolution for the sustainable biocatalytic synthesis of complex chemicals at large scale has materialized. Recently, the field of biocatalysis is seeing further expansion, with biocatalytic processes becoming more complex and involving multiple consecutive enzymatic conversions. These biocatalytic cascades are assembled in single reaction vessels to accomplish difficult chemistry under mild reaction conditions, with minimal waste generation and attractive economics. Advances in enzyme engineering have enabled the increasingly efficient optimization of enzymes in the context of such cascades, where each enzyme operates in the presence of others, under continuously changing conditions as substrate, reaction intermediates, and product concentrations fluctuate over the course of the reaction. Enzyme evolution has provided biocatalysts with greatly improved traits, including activity, selectivity, and stability. This review focuses on recently developed, industrially relevant enzyme cascades.


Subject(s)
Chemical Industry , Biocatalysis
7.
Proc Natl Acad Sci U S A ; 112(51): E7065-72, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644568

ABSTRACT

Mutants of Lactobacillus kefir short-chain alcohol dehydrogenase, used here as ketoreductases (KREDs), enantioselectively reduce the pharmaceutically relevant substrates 3-thiacyclopentanone and 3-oxacyclopentanone. These substrates differ by only the heteroatom (S or O) in the ring, but the KRED mutants reduce them with different enantioselectivities. Kinetic studies show that these enzymes are more efficient with 3-thiacyclopentanone than with 3-oxacyclopentanone. X-ray crystal structures of apo- and NADP(+)-bound selected mutants show that the substrate-binding loop conformational preferences are modified by these mutations. Quantum mechanical calculations and molecular dynamics (MD) simulations are used to investigate the mechanism of reduction by the enzyme. We have developed an MD-based method for studying the diastereomeric transition state complexes and rationalize different enantiomeric ratios. This method, which probes the stability of the catalytic arrangement within the theozyme, shows a correlation between the relative fractions of catalytically competent poses for the enantiomeric reductions and the experimental enantiomeric ratio. Some mutations, such as A94F and Y190F, induce conformational changes in the active site that enlarge the small binding pocket, facilitating accommodation of the larger S atom in this region and enhancing S-selectivity with 3-thiacyclopentanone. In contrast, in the E145S mutant and the final variant evolved for large-scale production of the intermediate for the antibiotic sulopenem, R-selectivity is promoted by shrinking the small binding pocket, thereby destabilizing the pro-S orientation.


Subject(s)
Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Crystallography, X-Ray , Directed Molecular Evolution , Enzyme Stability , Kinetics , Lactobacillus/enzymology , Lactobacillus/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation , Quantum Theory , Stereoisomerism , Substrate Specificity
8.
Nat Chem Biol ; 10(6): 431-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727900

ABSTRACT

Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1,000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is to our knowledge the first nonpatent report of the enzyme currently used for the manufacture of simvastatin as well as the intermediate evolved variants. Crystal structures and microsecond-scale molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations markedly altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Molecular Dynamics Simulation , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Allosteric Regulation , Catalytic Domain , Crystallography, X-Ray , Directed Molecular Evolution , Lovastatin/biosynthesis , Mutation , Protein Conformation
9.
Curr Opin Chem Biol ; 17(2): 284-92, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23462589

ABSTRACT

Biocatalysis has established itself as a scalable and green technology for the production of a broad range of pharmaceutical APIs and intermediates. The number and scope of biocatalysts employed on large scale to deliver cost-advantaged and quality-advantaged processes to important substances continue to expand. This review discusses the recent developments in the field, including examples of processes leveraging hydrolases, reductases, transaminases, oxidases and other biocatalysts, focused on the preparation of important investigational and launched therapeutics. Biocatalysts recently discovered, and in some cases rediscovered, for the interesting chemistry they enable are likely to further substantiate the expansion of the biocatalysis field.


Subject(s)
Biotechnology/methods , Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Biocatalysis , Enzymes/metabolism , Green Chemistry Technology , Pharmaceutical Preparations/chemical synthesis
10.
J Am Chem Soc ; 134(14): 6467-72, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22409428

ABSTRACT

The key structural feature in Boceprevir, Merck's new drug treatment for hepatitis C, is the bicyclic [3.1.0]proline moiety "P2". During the discovery and development stages, the P2 fragment was produced by a classical resolution approach. As the drug candidate advanced through clinical trials and approached regulatory approval and commercialization, Codexis and Schering-Plough (now Merck) jointly developed a chemoenzymatic asymmetric synthesis of P2 where the net reaction was an oxidative Strecker reaction. The key part of this reaction sequence is an enzymatic oxidative desymmetrization of the prochiral amine substrate.


Subject(s)
Monoamine Oxidase/chemistry , Proline/analogs & derivatives , Proline/chemical synthesis , Antiviral Agents/pharmacology , Catalysis , Catalytic Domain , Chemistry, Pharmaceutical/methods , Drug Design , Hepatitis C/drug therapy , Humans , Kinetics , Oxygen/chemistry , Proline/chemistry , Reproducibility of Results , Temperature
11.
Science ; 329(5989): 305-9, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20558668

ABSTRACT

Pharmaceutical synthesis can benefit greatly from the selectivity gains associated with enzymatic catalysis. Here, we report an efficient biocatalytic process to replace a recently implemented rhodium-catalyzed asymmetric enamine hydrogenation for the large-scale manufacture of the antidiabetic compound sitagliptin. Starting from an enzyme that had the catalytic machinery to perform the desired chemistry but lacked any activity toward the prositagliptin ketone, we applied a substrate walking, modeling, and mutation approach to create a transaminase with marginal activity for the synthesis of the chiral amine; this variant was then further engineered via directed evolution for practical application in a manufacturing setting. The resultant biocatalysts showed broad applicability toward the synthesis of chiral amines that previously were accessible only via resolution. This work underscores the maturation of biocatalysis to enable efficient, economical, and environmentally benign processes for the manufacture of pharmaceuticals.


Subject(s)
Amines/chemical synthesis , Directed Molecular Evolution , Hypoglycemic Agents/chemical synthesis , Ketones/chemistry , Protein Engineering , Pyrazines/chemical synthesis , Transaminases/chemistry , Triazoles/chemical synthesis , Biocatalysis , Catalytic Domain , Hypoglycemic Agents/metabolism , Ketones/metabolism , Models, Molecular , Molecular Structure , Mutagenesis , Protein Conformation , Pyrazines/metabolism , Sitagliptin Phosphate , Solubility , Stereoisomerism , Substrate Specificity , Transaminases/genetics , Transaminases/metabolism , Triazoles/metabolism
12.
Curr Opin Chem Biol ; 14(2): 122-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20071211

ABSTRACT

Over the past two years the application of ketoreductases in the commercial synthesis of chiral alcohols has undergone a revolution. Biocatalysts are now often the preferred catalyst for the synthesis of chiral alcohols via ketone reduction and are displacing reagents and chemocatalysts that only recently were considered break-through process solutions themselves. Tailor-made enzymes can now be generated from advanced, non-natural variants using HTP screening and modern molecular biology techniques. At the same time, global economic and environmental pressures direct industrial process development toward versatile platforms that can be applied to the different stages of product development. We will discuss the technologies that have emerged over the past years that have guided biocatalysis from the bottom of the toolbox, to the power tool of choice.


Subject(s)
Alcohol Oxidoreductases/metabolism , Alcohols/chemical synthesis , Bacterial Proteins/metabolism , Industrial Microbiology/methods , Protein Engineering/methods , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Biocatalysis
13.
Trends Biotechnol ; 26(3): 132-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18222559

ABSTRACT

Directed evolution is a powerful tool for the creation of commercially useful enzymes, particularly those approaches that are based on in vitro recombination methods, such as DNA shuffling. Although these types of search algorithms are extraordinarily efficient compared with purely random methods, they do not explicitly represent or interrogate the genotype-phenotype relationship and are essentially blind in nature. Recently, however, researchers have begun to apply multivariate statistical techniques to model protein sequence-function relationships and guide the evolutionary process by rapidly identifying beneficial diversity for recombination. In conjunction with state-of-the-art library generation methods, the statistical approach to sequence optimization is now being used routinely to create enzymes efficiently for industrial applications.


Subject(s)
Artificial Intelligence , Directed Molecular Evolution/trends , Enzymes/chemistry , Enzymes/genetics , Protein Engineering/trends , Recombinant Proteins/chemistry , Sequence Analysis, Protein/methods
14.
Nat Biotechnol ; 25(3): 338-44, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17322872

ABSTRACT

We describe a directed evolution approach that should find broad application in generating enzymes that meet predefined process-design criteria. It augments recombination-based directed evolution by incorporating a strategy for statistical analysis of protein sequence activity relationships (ProSAR). This combination facilitates mutation-oriented enzyme optimization by permitting the capture of additional information contained in the sequence-activity data. The method thus enables identification of beneficial mutations even in variants with reduced function. We use this hybrid approach to evolve a bacterial halohydrin dehalogenase that improves the volumetric productivity of a cyanation process approximately 4,000-fold. This improvement was required to meet the practical design criteria for a commercially relevant biocatalytic process involved in the synthesis of a cholesterol-lowering drug, atorvastatin (Lipitor), and was obtained by variants that had at least 35 mutations.


Subject(s)
Directed Molecular Evolution/methods , Hydrolases/metabolism , Proteins/isolation & purification , Quantitative Structure-Activity Relationship , Algorithms , Anticholesteremic Agents/chemical synthesis , Atorvastatin , Bacteria/enzymology , Catalysis , Heptanoic Acids/chemical synthesis , Hydrolases/genetics , Hydrolases/isolation & purification , Kinetics , Molecular Sequence Data , Proteins/metabolism , Pyrroles/chemical synthesis
16.
Curr Opin Biotechnol ; 13(4): 352-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12323358

ABSTRACT

In response to the need in the pharmaceutical industry for more complex, chiral molecules, fine-chemical companies are embracing new manufacturing technologies to produce compounds of these specifications. In particular, recent developments in biocatalysis combined with novel process engineering are providing improved methods for the production of valuable chemical intermediates.


Subject(s)
Chemical Industry/methods , Directed Molecular Evolution , Drug Industry/methods , Enzymes/biosynthesis , Enzymes/chemical synthesis , Protein Engineering/methods , Catalysis , Chemical Industry/trends , Drug Industry/trends , Protein Engineering/trends
17.
Angew Chem Int Ed Engl ; 40(21): 3948-3959, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-12404465

ABSTRACT

This review describes the current state of biocatalysis in the chemical industry. Although we recognize the advantages of chemical approaches, we suggest that the use of biological catalysis is about to expand dramatically because of the recent developments in the artificial evolution of genes that code for enzymes. For the first time it is possible to consider the rapid development of an enzyme that is designed for a specific chemical reaction. This technology offers the opportunity to adapt the enzyme to the needs of the process. We describe herein the development of enzyme evolution technology and particularly DNA shuffling. We also consider several classes of enzymes, their current applications, and the limitations that should be addressed. In a review of this length it is impossible to describe all the enzymes with potential for industrial exploitation; there are other classes, which given appropriate activity, selectivity, and robustness, could become useful tools for the industrial chemist. This is an exciting era for biocatalysis and we expect great progress in the future.

SELECTION OF CITATIONS
SEARCH DETAIL