Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Ther ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745414

ABSTRACT

Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T-cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/ poorly regulated activity, or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless CAR T-cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, IFN-γ release and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T-cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T-cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T-cell, favoring safer clinical implementation of this technology.

3.
STAR Protoc ; 3(2): 101319, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496793

ABSTRACT

Clinical trials that tested the antitumor activity of γδ T cells have been mostly unsuccessful. To address this, we expanded human Vγ9Vδ2 T cells in TGFß1, a cytokine which enhances their viability, trafficking properties, and intrinsic antitumor activity. This protocol summarizes the production and in vitro functional characterization of TGFß1 educated human Vγ9Vδ2 cells and highlights their compatibility with chimeric antigen receptor (CAR) engineering. We also describe in vivo testing of the antitumor activity of these CAR T cells in mice. For complete details on the use and execution of this protocol, please refer to Beatson et al. (2021).


Subject(s)
Receptors, Chimeric Antigen , Transforming Growth Factor beta , Animals , Cytokines , Humans , Mice , T-Lymphocytes
5.
Front Immunol ; 12: 716606, 2021.
Article in English | MEDLINE | ID: mdl-34539651

ABSTRACT

Recent clinical experience has demonstrated that adoptive regulatory T (Treg) cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote Treg cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a Good Manufacturing Practice (GMP) compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is coupled to a distinct Treg cell-intrinsic transcriptional program characterized by elevated expression of replication-related genes (CDK1, PLK1, CDC20), downregulation of progenitor and lymph node-homing molecules (LEF1 CCR7, SELL) and induction of intestinal and inflammatory tissue migratory markers (ITGA4, CXCR1) consistent with expression of a gut homing (CCR7lo ß7hi) phenotype. Importantly, we find that MulTreg are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or T helper type1 (Th1)-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 Treg-Specific Demethylated Region (TSDR) demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno Graft vs Host Disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


Subject(s)
Autoimmunity , Lymphocyte Count , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/immunology , Adult Stem Cells/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Biomarkers , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Disease Susceptibility , Female , Gene Expression Regulation , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Humans , Immunophenotyping , Male , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Expert Opin Drug Discov ; 16(10): 1105-1117, 2021 10.
Article in English | MEDLINE | ID: mdl-34038292

ABSTRACT

Introduction: Chimeric antigen receptor-engineered T-cells typically use the binding domains of antibodies to target cytotoxicity toward tumors. This approach has produced great efficacy against selected hematological cancers, but benefit in solid tumors has been limited. Characteristically, the microenvironment in solid tumors restricts CAR T cell function, thereby limiting success. Enhancing efficacy will depend on novel target discovery to refine specificity and reduce toxicity. Additionally, overcoming immunosuppressive mechanisms may be achieved by altering the structure of the CAR itself, together with ancillary gene expression or additional therapeutic interventions.Areas covered: Herein, the authors discuss approaches for refining and further developing CAR T cell therapies specifically for use with solid malignancies. The authors survey the existing literature and provide perspectives for the future.Expert opinion: Pronounced efficacy in solid tumors will likely require combination therapies, targeting both the tumor itself and associated immunosuppressive mechanisms. Future exploration of CAR T cell therapies for solid tumors is likely to incorporate next-generation designs that couple more precise targeting of cancer-associated targets with enhanced potency and resistance to exhaustion.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Combined Modality Therapy , Humans , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Tumor Microenvironment
7.
Cell Rep Med ; 2(12): 100457, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028604

ABSTRACT

Second generation (2G) chimeric antigen receptors (CARs) contain a CD28 or 41BB co-stimulatory endodomain and elicit remarkable efficacy in hematological malignancies. Third generation (3G) CARs extend this linear blueprint by fusing both co-stimulatory units in series. However, clinical impact has been muted despite compelling evidence that co-signaling by CD28 and 41BB can powerfully amplify natural immune responses. We postulate that effective dual co-stimulation requires juxta-membrane positioning of endodomain components within separate synthetic receptors. Consequently, we designed parallel (p)CARs in which a 2G (CD28+CD3ζ) CAR is co-expressed with a 41BB-containing chimeric co-stimulatory receptor. We demonstrate that the pCAR platform optimally harnesses synergistic and tumor-dependent co-stimulation to resist T cell exhaustion and senescence, sustaining proliferation, cytokine release, cytokine signaling, and metabolic fitness upon repeated stimulation. When engineered using targeting moieties of diverse composition, affinity, and specificity, pCAR T cells consistently elicit superior anti-tumor activity compared with T cells that express traditional linear CARs.


Subject(s)
CD28 Antigens/metabolism , Cell Membrane/metabolism , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Humans , Integrins/metabolism , Lymphoma/immunology , Mice, Inbred NOD , Mice, SCID , Mucin-1/metabolism , Protein Multimerization , Receptors, Colony-Stimulating Factor/metabolism , Xenograft Model Antitumor Assays
8.
Cell Rep Med ; 2(12): 100473, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35028614

ABSTRACT

Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-ß1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-ß1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-ß are described, including prostaglandin E2 receptor downmodulation, TGF-ß insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bone Marrow Cells/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Culture Media, Serum-Free/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Lymphocyte Activation , Mice, SCID , Prognosis
9.
Diabetologia ; 63(6): 1186-1198, 2020 06.
Article in English | MEDLINE | ID: mdl-32248243

ABSTRACT

AIMS/HYPOTHESIS: Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet. METHODS: In the clinical trial conducted by Type 1 Diabetes TrialNet, participants were immunised with 20 µg GAD-alum (twice or three times) or alum alone and peripheral blood mononuclear cell samples were banked at baseline and post treatment. In the present study, GAD-specific T cell responses were measured in these samples and GAD-specific T cell lines and clones were generated, which were then further characterised. RESULTS: At day 91 post immunisation, we detected GAD-specific IL-13+ CD4 T cell responses significantly more frequently in participants immunised with GAD-alum (71% and 94% treated twice or three times, respectively) compared with those immunised with alum alone (38%; p = 0.003 and p = 0.0002, respectively) accompanied by high secreted levels of IL-13, IL-4 and IL-5, confirming a GAD-specific, GAD-alum-induced Th2 response. Of note, GAD-specific, IL-13+ CD4 T cells observed after immunisation co-secreted IFN-γ, displaying a bifunctional Th1/Th2 phenotype. Single-cell transcriptome analysis identified IL13 and IFNG expression in concert with the canonical Th2 and Th1 transcription factor genes GATA3 and TBX21, respectively. T cell receptor ß-chain (TCRB) CDR3 regions of GAD-specific bifunctional T cells were identified in circulating naive and central memory CD4 T cell pools of non-immunised participants with new-onset type 1 diabetes and healthy individuals, suggesting the potential for bifunctional responses to be generated de novo by GAD-alum immunisation or via expansion from an existing public repertoire. CONCLUSIONS/INTERPRETATION: GAD-alum immunisation activates and propagates GAD-specific CD4 T cells with a distinctive bifunctional phenotype, the functional analysis of which might be important in understanding therapeutic responses.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Immunotherapy/methods , Th1 Cells/immunology , Th2 Cells/immunology , Cell Line , Cryopreservation , Humans , Randomized Controlled Trials as Topic , Receptors, Antigen, T-Cell/metabolism , Th1 Cells/metabolism , Th2 Cells/metabolism
10.
Expert Opin Biol Ther ; 19(8): 789-799, 2019 08.
Article in English | MEDLINE | ID: mdl-31038366

ABSTRACT

INTRODUCTION: Following recent breakthrough developments in the application of CAR T-cell treatments for hematologic cancers, the potential of this approach to achieve meaningful impact against solid tumors now warrants careful consideration. AREAS COVERED: Effective deployment of CAR T-cell immunotherapy for solid tumors has proven challenging to date, due to a series of formidable hurdles. The first of these is the paucity of safe targets for this highly potent, expensive and potentially toxic form of treatment. Compounding this, the tumor microenvironment (TME) constitutes a nexus of cellular and molecular elements that conspire to suppress effective immunological function at that site, corrupting the physiological reparative processes that operate during wound healing. These obstacles are considered with a view to addressing how next-generation CAR T-cell approaches may be effectively applied to different cancer types. EXPERT OPINION: A variety of novel synthetic biology and combinatorial strategies are being developed that can improve CAR T-cell specificity and combat immunosuppressive pathways found in the TME. In addition, recent advances in genome editing techniques are paving the way toward the production of universally applicable CAR T cells.


Subject(s)
Immunotherapy , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy/methods , Immunotherapy/trends , Neoplasms/genetics , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics
11.
Diabetologia ; 60(10): 1839-1850, 2017 10.
Article in English | MEDLINE | ID: mdl-28770318

ABSTRACT

Type 1 diabetes is an autoimmune disease characterised by the destruction of insulin producing beta cells in the pancreas. Whilst it remains unclear what the original triggering factors for this destruction are, observations from the natural history of human type 1 diabetes, including incidence rates in twins, suggest that the disease results from a combination of genetic and environmental factors. Whilst many different immune cells have been implicated, including members of the innate and adaptive immune systems, a view has emerged over the past 10 years that beta cell damage is mediated by the combined actions of CD4+ and CD8+ T cells with specificity for islet autoantigens. In health, these potentially pathogenic T cells are held in check by multiple regulatory mechanisms, known collectively as 'immunological tolerance'. This raises the question as to whether type 1 diabetes develops, at least in part, as a result of a defect in one or more of these control mechanisms. Immunological tolerance includes both central mechanisms (purging of the T cell repertoire of high-affinity autoreactive T cells in the thymus) and peripheral mechanisms, a major component of which is the action of a specialised subpopulation of T cells, known as regulatory T cells (Tregs). In this review, we highlight the evidence suggesting that a reduction in the functional capacity of different Treg populations contributes to disease development in type 1 diabetes. We also address current controversies regarding the putative causes of this defect and discuss strategies to correct it as a means to reduce or prevent islet destruction in a clinical setting.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Immune Tolerance , T-Lymphocytes, Regulatory/immunology , Animals , Humans
12.
J Autoimmun ; 79: 63-73, 2017 May.
Article in English | MEDLINE | ID: mdl-28117148

ABSTRACT

Based on the success in animal models of type 1 diabetes (T1D), clinical trials of adoptive regulatory T cell (Treg) therapy are underway using ex vivo expanded polyclonal Tregs. However, pre-clinical data also demonstrate that islet-specific Tregs are more potent than polyclonal Tregs at reversing T1D. Translation of this approach into man will require methods to generate large populations of islet-specific Tregs which, to date, has proved to be a major hurdle. Here we demonstrate the feasibility of lentiviral-mediated T cell receptor (TCR) gene transfer to confer antigen specificity on polyclonal human Tregs. Targeting has been achieved using TCRs isolated from human islet-specific and viral-specific CD4+ T cell clones. Engineered T cells demonstrated expression of ectopically-delivered TCRs, resulting in endowment of cognate antigen-specific responses. This enabled antigen-specific suppression at increased potency compared to polyclonal Tregs. However, cells transduced with islet-specific TCRs were less responsive to cognate antigen than viral-specific TCRs, and in some cases, required additional methods to isolate functional antigen-specific Tregs. This study demonstrates the potential of TCR gene transfer to develop islet-specific Treg therapies for effective treatment of T1D, but also highlights that additional optimisation may be required to achieve its full potential.


Subject(s)
Islets of Langerhans/immunology , Receptors, Antigen, T-Cell/genetics , T-Cell Antigen Receptor Specificity/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Gene Order , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Humans , Jurkat Cells , Lentivirus/genetics , Mice , Transduction, Genetic
13.
Mol Ther ; 23(11): 1783-1793, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26216515

ABSTRACT

T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1ß-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.


Subject(s)
Adult Stem Cells/physiology , Dinoprostone/immunology , Graft vs Host Disease/prevention & control , Interleukin-7/immunology , Mesenchymal Stem Cells/physiology , Multipotent Stem Cells/physiology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Adult Stem Cells/immunology , Autoimmunity , Cell Cycle Proteins/metabolism , Cell Proliferation , Cells, Cultured , Graft Rejection , Humans , Immune Tolerance , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-7/metabolism , Lymphocyte Depletion/adverse effects , Male , Mesenchymal Stem Cells/immunology , Multipotent Stem Cells/immunology , Nuclear Proteins/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Transplantation, Homologous/methods , Young Adult
14.
Br J Pharmacol ; 172(7): 1822-33, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25425280

ABSTRACT

BACKGROUND AND PURPOSE: The chemokine receptor CXCR3 is implicated in a variety of clinically important diseases, notably rheumatoid arthritis and atherosclerosis. Consequently, antagonists of CXCR3 are of therapeutic interest. In this study, we set out to characterize binding sites of the specific low MW CXCR3 antagonist VUF10085 and the broad spectrum antagonist TAK-779 which blocks CXCR3 along with CCR2 and CCR5. EXPERIMENTAL APPROACH: Molecular modelling of CXCR3, followed by virtual ligand docking, highlighted several CXCR3 residues likely to contact either antagonist, notably a conserved aspartate in helix 2 (Asp-112(2:63) ), which was postulated to interact with the quaternary nitrogen of TAK-779. Validation of modelling was carried out by site-directed mutagenesis of CXCR3, followed by assays of cell surface expression, ligand binding and receptor activation. KEY RESULTS: Mutation of Asn-132(3.33) , Phe-207 and Tyr-271(6.51) within CXCR3 severely impaired both ligand binding and chemotactic responses, suggesting that these residues are critical for maintenance of a functional CXCR3 conformation. Contrary to our hypothesis, mutation of Asp-112(2:63) had no observable effects on TAK-779 activity, but clearly decreased the antagonist potency of VUF 10085. Likewise, mutations of Phe-131(3.32) , Ile-279(6.59) and Tyr-308(7.43) were well tolerated and were critical for the antagonist activity of VUF 10085 but not for that of TAK-779. CONCLUSIONS AND IMPLICATIONS: This more detailed definition of a binding pocket within CXCR3 for low MW antagonists should facilitate the rational design of newer CXCR3 antagonists, with obvious clinical potential.


Subject(s)
Acetamides/pharmacology , Amides/pharmacology , CCR5 Receptor Antagonists/pharmacology , Pyrimidinones/pharmacology , Quaternary Ammonium Compounds/pharmacology , Receptors, CXCR3/antagonists & inhibitors , Receptors, CXCR3/metabolism , Animals , Binding Sites , Cell Line , Chemotaxis , Mice , Models, Molecular , Mutagenesis, Site-Directed , Receptors, CXCR3/chemistry , Receptors, CXCR3/genetics
15.
J Pharm Biomed Anal ; 35(3): 609-14, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15137986

ABSTRACT

A selective, accurate and precise assay was developed for the quantification in human plasma of the N-desmethyl metabolite of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor rosuvastatin. The assay-employing automated SPE followed by HPLC with positive ion electrospray tandem MS (HPLC-MS/MS)-was validated. The standard curve range for N-desmethyl rosuvastatin in human plasma was 0.5-30 ng/ml with 0.5 ng/ml being the limit of quantification. Plasma samples were mixed 1:1 with sodium acetate buffer (pH 4.0; 0.1M) soon after separation from red blood cells. N-Desmethyl rosuvastatin was stable in plasma:buffer at room temperature for 24h and at -70 degrees C for 12 months. The assay was applied successfully to the quantification of N-desmethyl rosuvastatin in human plasma following administration of rosuvastatin.


Subject(s)
Fluorobenzenes/blood , Pyrimidines/blood , Spectrometry, Mass, Electrospray Ionization/methods , Sulfonamides/blood , Chromatography, High Pressure Liquid/methods , Drug Stability , Fluorobenzenes/chemistry , Fluorobenzenes/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Pyrimidines/chemistry , Pyrimidines/metabolism , Rosuvastatin Calcium , Sulfonamides/chemistry , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...