Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(47): 44497-44513, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046334

ABSTRACT

Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.

2.
Chem Mater ; 35(16): 6246-6257, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37637012

ABSTRACT

Molybdenum disulfide (MoS2) few-layer films have gained considerable attention for their possible applications in electronics and optics and also as a promising material for energy conversion and storage. Intercalating alkali metals, such as lithium, offers the opportunity to engineer the electronic properties of MoS2. However, the influence of lithium on the growth of MoS2 layers has not been fully explored. Here, we have studied how lithium affects the structural and optical properties of the MoS2 few-layer films prepared using a new method based on one-zone sulfurization with Li2S as a source of lithium. This method enables incorporation of Li into octahedral and tetrahedral sites of the already prepared MoS2 films or during MoS2 formation. Our results discover an important effect of lithium promoting the epitaxial growth and horizontal alignment of the films. Moreover, we have observed a vertical-to-horizontal reorientation in vertically aligned MoS2 films upon lithiation. The measurements show long-term stability and preserved chemical composition of the horizontally aligned Li-doped MoS2.

3.
Rev Sci Instrum ; 93(11): 113909, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461520

ABSTRACT

The few-layer transition metal dichalcogenides (TMD) are an attractive class of materials due to their unique and tunable electronic, optical, and chemical properties, controlled by the layer number, crystal orientation, grain size, and morphology. One of the most commonly used methods for synthesizing the few-layer TMD materials is the chemical vapor deposition (CVD) technique. Therefore, it is crucial to develop in situ inspection techniques to observe the growth of the few-layer TMD materials directly in the CVD chamber environment. We demonstrate such an in situ observation on the growth of the vertically aligned few-layer MoS2 in a one-zone CVD chamber using a laboratory table-top grazing-incidence wide-angle X-ray scattering (GIWAXS) setup. The advantages of using a microfocus X-ray source with focusing Montel optics and a single-photon counting 2D X-ray detector are discussed. Due to the position-sensitive 2D X-ray detector, the orientation of MoS2 layers can be easily distinguished. The performance of the GIWAXS setup is further improved by suppressing the background scattering using a guarding slit, an appropriately placed beamstop, and He gas in the CVD reactor. The layer growth can be monitored by tracking the width of the MoS2 diffraction peak in real time. The temporal evolution of the crystallization kinetics can be satisfactorily described by the Avrami model, employing the normalized diffraction peak area. In this way, the activation energy of the particular chemical reaction occurring in the CVD chamber can be determined.

4.
J Phys Chem Lett ; 13(34): 7994-8001, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35984767

ABSTRACT

Molybdenum disulfide (MoS2) nanosheets exhibit anisotropic optical and electronic properties, stemming from their shape and electronic structure. Unveiling this anisotropy for study and usage in materials and devices requires the ability to control the orientation of dispersed nanosheets, but to date this has proved a challenging proposition. Here, we demonstrate magnetic field driven alignment of MoS2 nanosheets in a liquid crystal (LC) polymer and unveil the optical properties of the resulting anisotropic assembly. Nanosheet optical anisotropy is observed spectroscopically by Raman and direction-dependent photoluminescence (PL) measurements. Resulting data indicate significantly lower PL emission due to optical excitation with electric field oscillation out of plane, parallel to the MoS2 c-axis, than that associated with perpendicular excitation, with the dichroic ratio Iperp/Ipar = 3. The approach developed here provides a useful route to elucidate anisotropic optical properties of MoS2 nanosheets and to utilize such properties in new materials and devices.

5.
ACS Appl Mater Interfaces ; 14(32): 36815-36824, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35921624

ABSTRACT

Unique structure and ability to control the surface termination groups of MXenes make these materials extremely promising for solid lubrication applications. Due to the challenging delamination process, the tribological properties of two-dimensional MXenes particles have been mostly investigated as additive components in the solvents working in the macrosystem, while the understanding of the nanotribological properties of mono- and few-layer MXenes is still limited. Here, we investigate the nanotribological properties of mono- and double-layer Ti3C2Tx MXenes deposited by the Langmuir-Schaefer technique on SiO2/Si substrates. The friction of all of the samples demonstrated superior lubrication properties with respect to SiO2 substrate, while the friction force of the monolayers was found to be slightly higher compared to double- and three-layer flakes, which demonstrated similar friction. The coefficient of friction was estimated to be 0.087 ± 0.002 and 0.082 ± 0.003 for mono- and double-layer flakes, respectively. The viscous regime was suggested as the dominant friction mechanism at high scanning velocities, while the meniscus forces affected by contamination of the MXenes surface were proposed to control the friction at low sliding velocities.

6.
Adv Mater ; 34(9): e2106922, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34877720

ABSTRACT

Heterostructures composed of 2D materials are already opening many new possibilities in such fields of technology as electronics and magnonics, but far more could be achieved if the number and diversity of 2D materials were increased. So far, only a few dozen 2D crystals have been extracted from materials that exhibit a layered phase in ambient conditions, omitting entirely the large number of layered materials that may exist at other temperatures and pressures. This work demonstrates how such structures can be stabilized in 2D van der Waals (vdw) stacks under room temperature via growing them directly in graphene encapsulation by using graphene oxide as the template material. Specifically, an ambient stable 2D structure of copper and iodine, a material that normally only occurs in layered form at elevated temperatures between 645 and 675 K, is produced. The results establish a simple route to the production of more exotic phases of materials that would otherwise be difficult or impossible to stabilize for experiments in ambient.

7.
ACS Omega ; 6(51): 35398-35403, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984271

ABSTRACT

Thin films of transition-metal dichalcogenides are potential materials for optoelectronic applications. However, the application of these materials in practice requires knowledge of their fundamental optical properties. Many existing methods determine optical constants using predefined models. Here, a different approach was used. We determine the sheet conductance and absorption coefficient of few-layer PtSe2 in the infrared and UV-vis ranges without recourse to any particular model for the optical constants. PtSe2 samples with a thickness of about 3-4 layers were prepared by selenization of 0.5 nm thick platinum films on sapphire substrates at different temperatures. Differential reflectance was extracted from transmittance and reflectance measurements from the front and back of the sample. The film thickness, limited to a few atomic layers, allowed a thin-film approximation to calculate the optical conductance and absorption coefficient. The former has a very different energy dependence in the infrared, near-infrared, and visible ranges. The absorption coefficient exhibits a strong power-law dependence on energy with an exponent larger than three in the mid-infrared and near-infrared regions. We have not observed any evidence for a band gap in PtSe2 thin layers down to an energy of 0.4 eV from our optical measurements.

8.
RSC Adv ; 11(44): 27292-27297, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-35480646

ABSTRACT

Recently, few-layer PtSe2 films have attracted significant attention due to their properties and promising applications in high-speed electronics, spintronics and optoelectronics. Until now, the transport properties of this material have not reached the theoretically predicted values, especially with regard to carrier mobility. In addition, it is not yet known which growth parameters (if any) can experimentally affect the carrier mobility value. This work presents the fabrication of horizontally aligned PtSe2 films using one-zone selenization of pre-deposited platinum layers. We have identified the Se : Pt ratio as a parameter controlling the charge carrier mobility in the thin films. The mobility increases more than twice as the ratio changes in a narrow interval around a value of 2. A simultaneous reduction of the carrier concentration suggests that ionized impurity scattering is responsible for the observed mobility behaviour. This significant finding may help to better understand the transport properties of few-layer PtSe2 films.

10.
Phys Chem Chem Phys ; 22(5): 3097-3104, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31967129

ABSTRACT

Small π-conjugated organic molecules have attracted substantial attention in the past decade as they are considered as candidates for future organic-based (opto-)electronic applications. The molecular arrangement in the organic layer is one of the crucial parameters that determine the efficiency of a given device. The desired orientation of the molecules is achieved by a proper choice of the underlying substrate and growth conditions. Typically, one underlying material supports only one inherent molecular orientation at its interface. Here, we report on two different orientations of diindenoperylene (DIP) molecules on the same underlayer, i.e. on a few-layer MoS2 substrate. We show that DIP molecules adopt a lying-down orientation when deposited on few-layer MoS2 with horizontally oriented layers. In contrast, for vertically aligned MoS2 layers, DIP molecules are arranged in a standing-up manner. Employing in situ and real-time grazing-incidence wide-angle X-ray scattering (GIWAXS), we monitored the stress evolution within the thin DIP layer from the early stages of the growth, revealing different substrate-induced phases for the two molecular orientations. Our study opens up new possibilities for the next-generation of flexible electronics, which might benefit from the combination of MoS2 layers with unique optical and electronic properties and an extensive reservoir of small organic molecules.

11.
Sci Rep ; 9(1): 2001, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30765759

ABSTRACT

The last few decades faced on the fabrication of advanced engineering materials involving also different composites. Here, we report on the fabrication of few-layer molybdenum disulfide on top of thin polycrystalline diamond substrates with a high specific surface area. In the method, pre-deposited molybdenum coatings were sulfurized in a one-zone furnace at ambient pressure. As-prepared MoS2 layers were characterized by several techniques including grazing-incidence wide-angle X-ray scattering, atomic force microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. We found out that the initial thickness of Mo films determined the final c-axis crystallographic orientation of MoS2 layer as previously observed on other substrates. Even though it is well-known that Mo diffuses into diamond at elevated temperatures, the competing sulfurization applied effectively suppressed the diffusion and a chemical reaction between molybdenum and diamond. In particular, a Mo2C layer does not form at the interface between the Mo film and diamond substrate. The combination of diamond high specific surface area along with a controllable layer orientation might be attractive for applications, such as water splitting or water disinfection.

12.
RSC Adv ; 9(51): 29645-29651, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-35531524

ABSTRACT

Few-layer MoS2 films are promising candidates for applications in numerous areas, such as photovoltaics, photocatalysis, nanotribology, lithium batteries, hydro-desulfurization catalysis and dry lubricants, especially due to their distinctive electronic, optical, and catalytic properties. In general, two alignments of MoS2 layers are possible - the horizontal and the vertical one, having different physicochemical properties. Layers of both orientations are conventionally fabricated by a sulfurization of pre-deposited Mo films. So far, the Mo thickness was considered as a critical parameter influencing the final orientation of MoS2 layers with horizontally and vertically aligned MoS2 grown from thin (1 nm) and thick (3 nm) Mo films, respectively. Here, we present a fabrication protocol enabling the growth of horizontally or vertically aligned few-layer MoS2 films utilizing the same Mo thickness of 3 nm. We show that the sulfur vapor is another parameter influencing the growth mechanism, where a sulfurization with higher sulfur vapor pressure leads to vertical MoS2 layers and slow sulfur evaporation results in horizontally aligned layers for a thicker Mo starting layer.

13.
Sci Rep ; 7(1): 4399, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667311

ABSTRACT

While an increasing number of two-dimensional (2D) materials, including graphene and silicene, have already been realized, others have only been predicted. An interesting example is the two-dimensional form of silicon carbide (2D-SiC). Here, we present an observation of atomically thin and hexagonally bonded nanosized grains of SiC assembling temporarily in graphene oxide pores during an atomic resolution scanning transmission electron microscopy experiment. Even though these small grains do not fully represent the bulk crystal, simulations indicate that their electronic structure already approaches that of 2D-SiC. This is predicted to be flat, but some doubts have remained regarding the preference of Si for sp 3 hybridization. Exploring a number of corrugated morphologies, we find completely flat 2D-SiC to have the lowest energy. We further compute its phonon dispersion, with a Raman-active transverse optical mode, and estimate the core level binding energies. Finally, we study the chemical reactivity of 2D-SiC, suggesting it is like silicene unstable against molecular absorption or interlayer linking. Nonetheless, it can form stable van der Waals-bonded bilayers with either graphene or hexagonal boron nitride, promising to further enrich the family of two-dimensional materials once bulk synthesis is achieved.

14.
J Colloid Interface Sci ; 446: 203-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25668781

ABSTRACT

The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (<75 µm) result more advantageous for the release of the stored electrical energy. This effect is particularly evident in the aqueous electrolyte. Graphene-like materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors.

15.
Nano Lett ; 8(11): 3594-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18942881

ABSTRACT

The position and width of the Raman G-line was analyzed for unintentionally doped single-layered graphene samples. Results indicate a significant heating of the monolayer by the laser beam. Moreover, a weak additional component was resolved in the G-band. The position of the line is independent of the level of doping of the sample. We conclude that this new component is due to the phonons coupled to the intraband electronic transitions.

16.
Nanotechnology ; 18(49): 495709, 2007 Dec 12.
Article in English | MEDLINE | ID: mdl-20442490

ABSTRACT

The manufacture of a liquid metal ion source based on carbon nanotubes is described. Multi-wall carbon nanotubes were attached to the tip of a tungsten needle forming a fibre which was subsequently coated with a layer of indium. The onset of ion emission was observed at about 850 V, a value much lower than that for a conventional indium needle emitter. However, the nanotube fibres degrade rapidly at higher voltages and eventually disappear from the needle.

17.
Philos Trans A Math Phys Eng Sci ; 362(1824): 2375-406, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15482984

ABSTRACT

The discovery of fullerenes in 1985 opened a completely new field of materials research. Together with the single-wall carbon nanotubes (SWCNTs) discovered later, these curved carbon networks are a playground for pure as well as applied science. We present a review of Raman spectroscopy of fullerenes, SWCNTs and composite materials. Beginning with pristine C(60), we discuss intercalated C(60) compounds and polymerized C(60), as well as higher and endohedral fullerenes. Concerning SWCNTs, we show how the diameter distribution can be obtained from the Raman spectra and how doping modifies the spectra. Finally, the Raman response of C(60) encapsulated into SWCNTs (C(60) peapods) is discussed.


Subject(s)
Carbon/chemistry , Fullerenes/chemistry , Nanotubes/chemistry , Physics/methods , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...