Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895190

ABSTRACT

American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.


Subject(s)
Breeding , Genome , Humans , Cattle/genetics , Animals , United States , Heterozygote , Linkage Disequilibrium , Agriculture
2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36585810

ABSTRACT

The relationship between weather variables and dry matter intake (DMI) in beef steers was examined using daily intake data from 790 beef steers collected through a computer-controlled feeding system in nonsummer months. Daily data were condensed into weekly averages (N = 13,895 steer-weeks). The variables considered to predict DMI (2.50 to 23.60 kg/d) were body weight (197 to 796 kg), dietary net energy for maintenance (NEm; 0.79 to 2.97 Mcal/kg), ambient temperature (-23.73 °C to 21.40 °C), range of temperature (2.79 °C to 19.43 °C), dew point (-27.84 °C to 14.34 °C), wind speed (2.08 to 6.49 m/s), solar radiation (30.8 to 297.1 W/m2), and 2-wk lag (average of previous 2 wk's values) and monthly lag (average of previous 4 wk's values) of each weather variable. Toeplitz variance-covariance structure for repeated measures was used to determine the model to predict DMI, while accounting for the effects of body weight, dietary NEm, and other variables in the model. Two-week lag of ambient temperature interacted (P ≤ 0.005) with 2-wk lag of range of temperature, monthly lag of wind speed, 2-wk lag of solar radiation, and dew point to predict DMI. Interactions (P = 0.0001) between 2-wk lag of range of temperature vs. dew point and monthly lag of wind speed vs. 2-wk lag of solar radiation were also detected. This study reports important weather variables associated with differences in DMI of growing and finishing steers and will help improve the accuracy of DMI prediction equations for beef cattle. Improvements in the accuracy of predicting DMI should give producers better tools to plan and execute efficient feeding management programs. The R2 of the overall model was 0.8891.


Dry matter intake (DMI) models for beef cattle in the Northern Great Plains may not be a good fit because of extreme weather conditions experienced in this region. The objective of this study is to include additional weather variables (temperature, dewpoint, wind speed, range of temperature, and solar radiation as well as 2-wk lag and monthly lag for each weather variable) that may influence DMI models to improve accuracy. Intake data (13,895 observations) collected from 790 beef steers using an automatic feeding system from 2011 to 2018 was utilized. It is well-established that body weight and dietary energy density influences DMI in cattle, therefore, both were included in the base model. Weather variables that contributed the most to the model were 2-wk lag of range of temperature, ambient temperature, and solar radiation. There were also two-way interactions between most of the weather variables. This study shows that weather variables interact and current DMI models should account for these interactions. Ultimately, this will improve DMI models in the Northern Great Plains.


Subject(s)
Diet , Weather , Cattle , Animals , Diet/veterinary , Body Weight , Temperature , Research Design , Animal Feed
4.
Front Genet ; 11: 599, 2020.
Article in English | MEDLINE | ID: mdl-32595702

ABSTRACT

The animal's reaction to human handling (i.e., temperament) is critical for work safety, productivity, and welfare. Subjective phenotyping methods have been traditionally used in beef cattle production. Even so, subjective scales rely on the evaluator's knowledge and interpretation of temperament, which may require substantial experience. Selection based on such subjective scores may not precisely change temperament preferences in cattle. The objectives of this study were to investigate the underlying genetic interrelationships among temperament measurements using genetic factor analytic modeling and validate a movement-based objective method (four-platform standing scale, FPSS) as a measure of temperament. Relationships among subjective methods of docility score (DS), temperament score (TS), 12 qualitative behavior assessment (QBA) attributes and objective FPSS including the standard deviation of total weight on FPSS over time (SSD) and coefficient of variation of SSD (CVSSD) were investigated using 1,528 calves at weaning age. An exploratory factor analysis (EFA) identified two latent variables account for TS and 12 QBA attributes, termed difficult and easy from their characteristics. Inclusion of DS in EFA was not a good fit because it was evaluated under restraint and other measures were not. A Bayesian confirmatory factor analysis inferred the difficult and easy scores discovered in EFA. This was followed by fitting a pedigree-based Bayesian multi-trait model to characterize the genetic interrelationships among difficult, easy, DS, SSD, and CVSSD. Estimates of heritability ranged from 0.18 to 0.4 with the posterior standard deviation averaging 0.06. The factors of difficult and easy exhibited a large negative genetic correlation of -0.92. Moderate genetic correlation was found between DS and difficult (0.36), easy (-0.31), SSD (0.42), and CVSSD (0.34) as well as FPSS with difficult (CVSSD: 0.35; SSD: 0.42) and easy (CVSSD: -0.35; SSD: -0.4). Correlation coefficients indicate selection could be performed with either and have similar outcomes. We contend that genetic factor analytic modeling provided a new approach to unravel the complexity of animal behaviors and FPSS-like measures could increase the efficiency of genetic selection by providing automatic, objective, and consistent phenotyping measures that could be an alternative of DS, which has been widely used in beef production.

7.
Genet Mol Biol ; 37(4): 631-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25505837

ABSTRACT

The objectives of this study were to 1) compare four models for breeding value prediction using genomic or pedigree information and 2) evaluate the impact of fixed effects that account for family structure. Comparisons were made in a Nellore-Angus population comprising F2, F3 and half-siblings to embryo transfer F2 calves with records for overall temperament at weaning (TEMP; n = 769) and Warner-Bratzler shear force (WBSF; n = 387). After quality control, there were 34,913 whole genome SNP markers remaining. Bayesian methods employed were BayesB (π̃ = 0.995 or 0.997 for WBSF or TEMP, respectively) and BayesC (π = 0 and π̃), where π̃ is the ideal proportion of markers not included. Direct genomic values (DGV) from single trait Bayesian analyses were compared to conventional pedigree-based animal model breeding values. Numerically, BayesC procedures (using π̃) had the highest accuracy of all models for WBSF and TEMP (ρ̂gg = 0.843 and 0.923, respectively), but BayesB had the least bias (regression of performance on prediction closest to 1, ß̂y,x = 2.886 and 1.755, respectively). Accounting for family structure decreased accuracy and increased bias in prediction of DGV indicating a detrimental impact when used in these prediction methods that simultaneously fit many markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...