Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446749

ABSTRACT

This paper describes the three-step synthesis of TBS-MAC, a masked acyl cyanide (MAC) and a versatile one-carbon oxidation state three synthon. We have developed a scalable and detailed synthesis that involves: (1) acetylation of malononitrile to form the sodium enolate, (2) protonation of the enolate to form acetylmalononitrile, and (3) epoxidation of the enol, rearrangement to an unstable alcohol, and TBS-protection to form the title compound. Both the sodium enolate and acetylmalononitrile are bench-stable precursors to the intermediate hydroxymalononitrile, which can be converted to other MAC reagents beyond TBS by varying the protecting group (Ac, MOM, EE, etc.).


Subject(s)
Carboxylic Acids , Cyanides , Alcohols , Sodium
2.
J Biol Chem ; 296: 100363, 2021.
Article in English | MEDLINE | ID: mdl-33539919

ABSTRACT

During the integration step, human immunodeficiency virus type 1 integrase (IN) interacts with viral DNA and the cellular cofactor LEDGF/p75 to effectively integrate the reverse transcript into the host chromatin. Allosteric human immunodeficiency virus type 1 integrase inhibitors (ALLINIs) are a new class of antiviral agents that bind at the dimer interface of the IN catalytic core domain and occupy the binding site of LEDGF/p75. While originally designed to block IN-LEDGF/p75 interactions during viral integration, several of these compounds have been shown to also severely impact viral maturation through an IN multimerization mechanism. In this study, we tested the hypothesis that these dual properties of ALLINIs could be decoupled toward late stage viral replication effects by generating additional contact points between the bound ALLINI and a third subunit of IN. By sequential derivatization at position 7 of a quinoline-based ALLINI scaffold, we show that IN multimerization properties are enhanced by optimizing hydrophobic interactions between the compound and the C-terminal domain of the third IN subunit. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the ALLINIs selectivity toward the viral maturation stage. Thus, we demonstrate that to fully maximize the potency of ALLINIs, the interactions between the inhibitor and all three IN subunits need to be simultaneously optimized.


Subject(s)
HIV Integrase/metabolism , HIV-1/metabolism , Quinolines/pharmacology , Allosteric Regulation/drug effects , Antiviral Agents/pharmacology , HEK293 Cells , HIV Integrase/physiology , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/pathogenicity , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Protein Binding/drug effects , Protein Multimerization/drug effects , Quinolines/chemistry , Quinolines/metabolism , Virus Integration/drug effects , Virus Replication/drug effects
3.
Beilstein J Org Chem ; 14: 2529-2536, 2018.
Article in English | MEDLINE | ID: mdl-30344776

ABSTRACT

A convenient two-step synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate derivatives has been developed starting from commercially available 2-aminobenzoic acids. In step 1, the anthranilic acids are smoothly converted to isatoic anhydrides using solid triphosgene in THF. In step 2, the anhydride electrophiles are reacted with the sodium enolate of ethyl acetoacetate, generated from sodium hydroxide, in warm N,N-dimethylacetamide resulting in the formation of substituted quinolines. A degradation-build-up strategy of the ethyl ester at the 3-position allowed for the construction of the α-hydroxyacetic acid residue required for the synthesis of key arylquinolines involved in an HIV integrase project.

4.
ACS Med Chem Lett ; 9(10): 1007-1012, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344908

ABSTRACT

HIV-1 integrase multimerization inhibitors have recently been established as an effective class of antiretroviral agents due to their potent ability to inhibit viral replication. Specifically, quinoline-based inhibitors have been shown to effectively impair HIV-1 replication, highlighting the importance of these heterocyclic scaffolds. Pursuant of our endeavors to further develop a library of quinoline-based candidates, we have implemented a structure-activity relationship study of trisubstituted 4-arylquinoline scaffolds that examined the integrase multimerization properties of substitution patterns at the 4-position of the quinoline. Compounds consisting of substituted phenyl rings, heteroaromatics, or polycyclic moieties were examined utilizing an integrase aberrant multimerization in vitro assay. para-Chloro-4-phenylquinoline 11b and 2,3-benzo[b][1,4]dioxine 15f showed noteworthy EC50 values of 0.10 and 0.08 µM, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL