Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(4): 795-798, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31747085

ABSTRACT

Innovative materials for phosphor-converted white light-emitting diodes (pc-LEDs) are much sought after due to the huge potential of the LED technology to reduce energy consumption worldwide. One of the main levers for further improvements are the conversion phosphors. The system Ca1-x Srx AlSiN3 :Eu2+ currently provides one of the most important red-emitting phosphors for pc-LEDs. We report the discovery of the new polymorph ß-Ca1-x Srx AlSiN3 :Eu2+ which allows for significant improvements to LED efficacies. It crystallizes in the orthorhombic space group Pbcn with lattice parameters a=982.43(10) pm, b=575.2(1) pm and c=516.12(5) pm. Compared to α-Ca1-x Srx AlSiN3 :Eu2+ , its emission shows a significantly reduced spectral full-width at half maximum (FWHM). With that, we demonstrated 3 % efficacy increase for white light-emitting pc-LEDs. The new polymorph can easily be industrialised, because the synthesis works on the same equipment as α-Ca1-x Srx AlSiN3 :Eu2+ .

2.
Leukemia ; 32(9): 1994-2007, 2018 09.
Article in English | MEDLINE | ID: mdl-29588546

ABSTRACT

Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lymphoma, Large-Cell, Anaplastic/etiology , Lymphoma, Large-Cell, Anaplastic/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factor AP-1/metabolism , Binding Sites , CRISPR-Cas Systems , Carrier Proteins/metabolism , Cell Death/genetics , Cell Line, Tumor , Cell Survival , Cytokines/metabolism , Gene Editing , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lymphoma, Large-Cell, Anaplastic/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Transcriptome
3.
Proc Natl Acad Sci U S A ; 111(42): E4513-22, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288773

ABSTRACT

Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.


Subject(s)
Chromatin/metabolism , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Interferon Regulatory Factors/metabolism , Transcription Factor AP-1/metabolism , Amino Acid Motifs , Animals , B-Lymphocytes/cytology , Cell Line, Tumor , Cell Lineage , Chemokines/metabolism , Chemotaxis , Cytokines/metabolism , Deoxyribonuclease I/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Inflammation , Leukocytes, Mononuclear/cytology , Lymphoma/metabolism , Lymphoma, Non-Hodgkin/metabolism , Mice , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Plasmids/metabolism , Spleen/cytology
4.
Nat Immunol ; 7(2): 207-15, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16369535

ABSTRACT

B cell differentiation is controlled by a complex network of lineage-restricted transcription factors. How perturbations to this network alter B cell fate remains poorly understood. Here we show that classical Hodgkin lymphoma tumor cells, which originate from mature B cells, have lost the B cell phenotype as a result of aberrant expression of transcriptional regulators. The B cell-specific transcription factor program was disrupted by overexpression of the helix-loop-helix proteins ABF-1 and Id2. Both factors antagonized the function of the B cell-determining transcription factor E2A. As a result, expression of genes specific to B cells was lost and expression of genes not normally associated with the B lineage was upregulated. These data demonstrate the plasticity of mature human lymphoid cells and offer an explanation for the unique classical Hodgkin lymphoma phenotype.


Subject(s)
B-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hodgkin Disease/metabolism , Inhibitor of Differentiation Protein 2/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Dimerization , Gene Expression , Hodgkin Disease/genetics , Hodgkin Disease/immunology , Hodgkin Disease/pathology , Humans , Inhibitor of Differentiation Protein 2/genetics , Multiprotein Complexes , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
5.
Blood ; 106(13): 4287-93, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16123212

ABSTRACT

Transcription factor nuclear factor kappa B (NF-kappaB) plays a central role in the pathogenesis of classical Hodgkin lymphoma (cHL). In anaplastic large-cell lymphomas (ALCLs), which share molecular lesions with cHL, the NF-kappaB system has not been equivalently investigated. Here we describe constitutive NF-kappaB p50 homodimer [(p50)2] activity in ALCL cells in the absence of constitutive activation of the IkappaB kinase (IKK) complex. Furthermore, (p50)2 contributes to the NF-kappaB activity in Hodgkin/Reed-Sternberg (HRS) cells. Bcl-3, which is an inducer of nuclear (p50)2 and is associated with (p50)2 in ALCL and HRS cell lines, is abundantly expressed in ALCL and HRS cells. Notably, a selective overexpression of Bcl-3 target genes is found in ALCL cells. By immunohistochemical screening of 288 lymphoma cases, a strong Bcl-3 expression in cHL and in peripheral T-cell non-Hodgkin lymphoma (T-NHL) including ALCL was found. In 3 of 6 HRS cell lines and 25% of primary ALCL, a copy number increase of the BCL3 gene locus was identified. Together, these data suggest that elevated Bcl-3 expression has an important function in cHL and peripheral T-NHL, in particular ALCL.


Subject(s)
Gene Expression Regulation, Neoplastic , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/metabolism , NF-kappa B p50 Subunit/metabolism , Proto-Oncogene Proteins/metabolism , B-Cell Lymphoma 3 Protein , Cell Line , Dimerization , Humans , I-kappa B Proteins/metabolism , Interleukin-9/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Microarray Analysis , Oncogene Proteins v-rel/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Transcription Factors
6.
J Exp Med ; 199(8): 1041-52, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15078899

ABSTRACT

Resistance to death receptor-mediated apoptosis is supposed to be important for the deregulated growth of B cell lymphoma. Hodgkin/Reed-Sternberg (HRS) cells, the malignant cells of classical Hodgkin's lymphoma (cHL), resist CD95-induced apoptosis. Therefore, we analyzed death receptor signaling, in particular the CD95 pathway, in these cells. High level CD95 expression allowed a rapid formation of the death-inducing signaling complex (DISC) containing Fas-associated death domain-containing protein (FADD), caspase-8, caspase-10, and most importantly, cellular FADD-like interleukin 1beta-converting enzyme-inhibitory protein (c-FLIP). The immunohistochemical analysis of the DISC members revealed a strong expression of CD95 and c-FLIP overexpression in 55 out of 59 cases of cHL. FADD overexpression was detectable in several cases. Triggering of the CD95 pathway in HRS cells is indicated by the presence of CD95L in cells surrounding them as well as confocal microscopy showing c-FLIP predominantly localized at the cell membrane. Elevated c-FLIP expression in HRS cells depends on nuclear factor (NF)-kappaB. Despite expression of other NF-kappaB-dependent antiapoptotic proteins, the selective down-regulation of c-FLIP by small interfering RNA oligoribonucleotides was sufficient to sensitize HRS cells to CD95 and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Therefore, c-FLIP is a key regulator of death receptor resistance in HRS cells.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis/physiology , Carrier Proteins/physiology , Hodgkin Disease/pathology , Hodgkin Disease/physiopathology , Intracellular Signaling Peptides and Proteins , Reed-Sternberg Cells/pathology , Reed-Sternberg Cells/physiology , fas Receptor/physiology , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Base Sequence , CASP8 and FADD-Like Apoptosis Regulating Protein , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 10 , Caspase 8 , Caspases/metabolism , Cell Line, Tumor , Cycloheximide/pharmacology , Fas-Associated Death Domain Protein , Humans , Membrane Glycoproteins/physiology , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Reed-Sternberg Cells/drug effects , TNF-Related Apoptosis-Inducing Ligand , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...