Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36769941

ABSTRACT

Considerable research has been devoted to the development of cathode materials for Al-ion batteries, but challenges remain regarding the behavior of aluminum anodes. Inert oxide (Al2O3) film on Al surfaces presents a barrier to electrochemical activity. The structure of the oxide film needs to be weakened to facilitate ion transfer during electrochemical activity. This study addresses oxide film challenges by studying Al alloy anodes with different iron content. The results reveal that using an anode of 99% Al 1% Fe in a cell increases the cycling lifetime by 48%, compared to a 99.99% Al anode. The improvement observed with the 99% Al 1% Fe anode is attributed to its fractional surface area corrosion being about 12% larger than that of a 99.99% Al anode. This is coupled to precipitation of a higher number of Al3Fe particles, which are evenly scattered in the Al matrix of 99% Al 1% Fe. These Al3Fe particles constitute weak spots in the oxide film for the electrolyte to attack, and access to fresh Al. The addition of iron to an Al anode thus offers a cheap and easy route for targeting the oxide passivating film challenge in Al-ion batteries.

2.
Nanotechnology ; 33(21)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35030545

ABSTRACT

Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs is highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies.

3.
PLoS One ; 16(7): e0254023, 2021.
Article in English | MEDLINE | ID: mdl-34214111

ABSTRACT

The cycling performance of supercapacitors sometimes becomes limited when electrode materials slough off during frequent charge-discharge cycles, due to weak bonding between the active material and the current collector. In this work, a flexible graphite foil substrate was successfully used as the current collector for supercapacitor electrodes. Graphite foil substrates were treated in different ways with different acid concentrations and temperatures before being coated with an active material (NiMoO4/nanographite). The electrode treated with HNO3 (65%) and H2SO4 (95%) in a 1:1 ratio at 24°C gave better electrochemical performance than did electrodes treated in other ways. This electrode had capacitances of 441 and 184 Fg-1 at current densities of 0.5 and 10 Ag-1, respectively, with a good rate capability over the current densities of the other treated electrodes. SEM observation of the electrodes revealed that NiMoO4 with a morphology of nanorods 100-120 nm long was properly accommodated on the graphite surface during the charge-discharge process. It also showed that treatment with high-concentration acid created an appropriately porous and rough surface on the graphite, enhancing the adhesion of NiMoO4/nanographite and boosting the electrochemical performance.


Subject(s)
Electric Capacitance , Graphite/chemistry , Molybdenum/chemistry , Nanocomposites/chemistry , Nickel/chemistry , Electrochemistry , Electrodes , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
4.
ACS Omega ; 6(10): 6600-6606, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748572

ABSTRACT

Silicon anodes are considered as promising electrode materials for next-generation high capacity lithium-ion batteries (LIBs). However, the capacity fading due to the large volume changes (∼300%) of silicon particles during the charge-discharge cycles is still a bottleneck. The volume changes of silicon lead to a fracture of the silicon particles, resulting in recurrent formation of a solid electrolyte interface (SEI) layer, leading to poor capacity retention and short cycle life. Nanometer-scaled silicon particles are the favorable anode material to reduce some of the problems related to the volume changes, but problems related to SEI layer formation still need to be addressed. Herein, we address these issues by developing a composite anode material comprising silicon nanoparticles and nanographite. The method developed is simple, cost-efficient, and based on an aerogel process. The electrodes produced by this aerogel fabrication route formed a stable SEI layer and showed high specific capacity and improved cyclability even at high current rates. The capacity retentions were 92 and 72% of the initial specific capacity at the 171st and the 500th cycle, respectively.

5.
Adv Mater ; 32(38): e2002824, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803872

ABSTRACT

Triboelectric nanogenerators (TENGs) have attracted increasing attention because of their excellent energy conversion efficiency, the diverse choice of materials, and their broad applications in energy harvesting devices and self-powered sensors. New materials have been explored, including green materials, but their performances have not yet reached the level of that for fluoropolymers. Here, a high-performance, fully green TENG (FG-TENG) using cellulose-based tribolayers is reported. It is shown that the FG-TENG has an output power density of above 300 W m-2 , which is a new record for green-material-based TENGs. The high performance of the FG-TENG is due to the high positive charge density of the regenerated cellulose. The FG-TENG is stable after more than 30 000 cycles of operations in humidity of 30%-84%. This work demonstrates that high-performance TENGs can be made using natural green materials for a broad range of applications.

6.
Sci Rep ; 9(1): 14621, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31601920

ABSTRACT

To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g-1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g-1.

7.
Sensors (Basel) ; 19(18)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487792

ABSTRACT

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au-ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.

8.
Sci Rep ; 9(1): 8966, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31222127

ABSTRACT

Industrially scalable methods for the production of graphene and other nanographites are needed to achieve cost-efficient commercial products. At present, there are several available routes for the production of these materials but few allow large-scale manufacturing and environmentally friendly low-cost solvents are rarely used. We have previously demonstrated a scalable and low-cost industrial route to produce nanographites by tube-shearing in water suspensions. However, for a deeper understanding of the exfoliation mechanism, how and where the actual exfoliation occurs must be known. This study investigates the effect of shear zone geometry, straight and helical coil tubes, on this system based on both numerical simulation and experimental data. The results show that the helical coil tube achieves a more efficient exfoliation with smaller and thinner flakes than the straight version. Furthermore, only the local wall shear stress in the turbulent flow is sufficient for exfoliation since the laminar flow contribution is well below the needed range, indicating that exfoliation occurs at the tube walls. This explains the exfoliation mechanism of water-based tube-shear exfoliation, which is needed to achieve scaling to industrial levels of few-layer graphene with known and consequent quality.

9.
Sci Rep ; 8(1): 3296, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459668

ABSTRACT

MoS2 has been studied intensively during recent years as a semiconducting material in several fields, including optoelectronics, for applications such as solar cells and phototransistors. The photoresponse mechanisms of MoS2 have been discussed but are not fully understood, especially the phenomenon in which the photocurrent slowly increases. Here, we report on a study of the photoresponse flash-light-processed MoS2 films of different thicknesses and areas. The photoresponse of such films under different light intensities and bias voltages was measured, showing significant current changes with a quick response followed by a slow one upon exposure to pulsed light. Our in-depth study suggested that the slow response was due to the photothermal effect that heats the MoS2; this hypothesis was supported by the resistivity change at different temperatures. The results obtained from MoS2 films with various thicknesses indicated that the minority-carrier diffusion length was 1.36 µm. This study explained the mechanism of the slow response of the MoS2 film and determined the effective thickness of MoS2 for a photoresponse to occur. The method used here for fabricating MoS2 films could be used for fabricating optoelectronic devices due to its simplicity.

10.
Adv Biosyst ; 2(5): e1800019, 2018 May.
Article in English | MEDLINE | ID: mdl-33103858

ABSTRACT

Antibacterial agents based on nanoparticles (NPs) have many important applications, e.g., for the textile industry, surface disinfection, wound dressing, water treatment, and food preservation. Because of their prevalent use it is important to understand whether bacteria could develop resistance to such antibacterial NPs similarly to the resistance that bacteria are known to develop to antibiotics. Here, it is reported that Escherichia coli (E. coli) develops adaptive resistance to antibacterial ZnO NPs after several days' exposure to the NPs. But, in contrast to antibiotics-resistance, the observed resistance to ZnO NPs is not stable-after several days without exposure to the NPs, the bacteria regain their sensitivity to the NPs' antibacterial properties. Based on the analyses it is suggested that the observed resistance is caused by changes in the shape of the bacteria and the expressions of membrane proteins. The findings provide insights into the response of bacteria to antibacterial NPs, which is important to elucidate for designing and evaluating the risk of applications based on antibacterial NPs.

11.
Nanomaterials (Basel) ; 7(8)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28817099

ABSTRACT

Electrically conductive films are key components in most printed and flexible electronics applications. For the solution processing of conductive films, inks containing silver nanoparticles (AgNPs) remain important because of their relatively easy processing and generally low resistivity after a sintering procedure. Because the commonly used, moderate sintering temperatures of 150-300 °C are still too high for most low-cost flexible substrates, expanding the knowledge of surface-ink interactions that affect the sintering temperature is desirable. It is known that chloride ions can assist the sintering of AgNP films by displacing capping agents on the surfaces of AgNPs. However, very little is known about other possible Cl-AgNP interactions that affect the resistivity and no interaction having the opposite effect (sintering inhibition) has been identified before. Here we identify such a Cl-AgNP interaction giving sintering inhibition and find that the mechanism involves the formation of AgCl nanocrystals within the AgNP film. The AgCl formation was observed after inkjet-printing of AgNP inks with polyvinylpyrrolidone (PVP) as the capping agent onto papers with quick-absorbing coatings containing 0.3 wt % KCl. Our findings show that chloride can have opposite roles during sintering, either assisting or inhibiting the sintering depending on the prevalence of AgCl formation. The prevalence of AgCl formation depends on the absorption properties and the capping agent.

12.
PLoS One ; 11(4): e0154522, 2016.
Article in English | MEDLINE | ID: mdl-27120098

ABSTRACT

Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants and other funtionalization agents. Pure water should be an ideal solvent, however, it is generally believed, based on solubility theories that stable dispersions of water could not be achieved and systematic studies are lacking. Here we describe the use of water as a solvent and the stabilization process involved therein. We introduce an exfoliation method of molybdenum disulfide (MoS2) in pure water at high concentration (i.e., 0.14 ± 0.01 g L-1). This was achieved by thinning the bulk MoS2 by mechanical exfoliation between sand papers and dispersing it by liquid exfoliation through probe sonication in water. We observed thin MoS2 nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of the nanosheets were around 200 nm, the same range obtained in organic solvents. Electrophoretic mobility measurements indicated that electrical charges may be responsible for the stabilization of the dispersions. A probability decay equation was proposed to compare the stability of these dispersions with the ones reported in the literature. Water can be used as a solvent to disperse nanosheets and although the stability of the dispersions may not be as high as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable.


Subject(s)
Disulfides/chemistry , Molybdenum/chemistry , Water/chemistry , Nanostructures , Solvents , Surface Properties
13.
PLoS One ; 11(4): e0154686, 2016.
Article in English | MEDLINE | ID: mdl-27128841

ABSTRACT

The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process.


Subject(s)
Graphite/chemistry , Nanocomposites/chemistry , Electric Impedance , Electrodes , Microscopy, Atomic Force , Microscopy, Electron , Nanocomposites/ultrastructure , Nanotechnology/instrumentation , Particle Size , Water
14.
ACS Appl Mater Interfaces ; 7(33): 18273-82, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26245645

ABSTRACT

Low-cost solution-processing of highly conductive films is important for the expanding market of printed electronics. For roll-to-roll manufacturing, suitable flexible substrates and compatible postprocessing are essential. Here, custom-developed coated papers are demonstrated to facilitate the inkjet fabrication of high performance copper patterns. The patterns are fabricated in ambient conditions using water-based CuO dispersion and intense pulsed light (IPL) processing. Papers using a porous CaCO3 precoating, combined with an acidic mesoporous absorption coating, improve the effectiveness and reliability of the IPL process. The processing is realizable within 5 ms, using a single pulse of light. A resistivity of 3.1 ± 0.12 µΩ·cm is achieved with 400 µm wide conductors, corresponding to more than 50% of the conductivity of bulk copper. This is higher than previously reported results for IPL-processed copper.

15.
Sci Rep ; 5: 7676, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25566696

ABSTRACT

Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

16.
Nanotechnology ; 25(9): 094002, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24521824

ABSTRACT

Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

17.
Sci Rep ; 3: 1477, 2013.
Article in English | MEDLINE | ID: mdl-23503102

ABSTRACT

The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

18.
PLoS One ; 7(1): e30469, 2012.
Article in English | MEDLINE | ID: mdl-22291962

ABSTRACT

Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm) and micrometer (width ∼20 µm), to decimeter (length ∼0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.


Subject(s)
Gold/chemistry , Microtechnology/methods , Nanostructures/chemistry , Electrochemistry/methods , Gold Compounds/chemical synthesis , Gold Compounds/chemistry , Materials Testing , Microscopy, Electron, Scanning , Models, Biological , Nanotechnology/methods , Nanowires/chemistry , Particle Size , Porosity , Surface Properties , Zinc Oxide/chemical synthesis , Zinc Oxide/chemistry
19.
PLoS One ; 7(1): e30106, 2012.
Article in English | MEDLINE | ID: mdl-22253894

ABSTRACT

By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.


Subject(s)
Electricity , Microscopy, Scanning Tunneling , Computer Simulation , Diffusion , Phase Transition , Static Electricity , Surface Properties , Thermodynamics
20.
PLoS One ; 6(2): e17209, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21390314

ABSTRACT

Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/µm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm⁻¹.


Subject(s)
Electroplating/methods , Ink , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission/methods , Silver Compounds/chemical synthesis , Silver/chemistry , Air , Carbon/metabolism , Electron Probe Microanalysis/methods , Materials Testing/methods , Models, Biological , Particle Size , Silver Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...