Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dev Biol ; 458(2): 141-152, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31634437

ABSTRACT

PURPOSE: The purpose of this study is to determine the effect of Cytoglobin (Cygb) deficiency on Crb1-related retinopathy. The Crb1 cell polarity complex is required for photoreceptor function and survival. Crb1-related retinopathies encompass a broad range of phenotypes which are not completely explained by the variability of Crb1 mutations. Genes thought to modify Crb1 function are therefore important targets of research. The biological function of Cygb involves oxygen delivery, scavenging of reactive oxygen species, and nitric oxide metabolism. However, the relationship of Cygb to diseases involving the Crb1 cell polarity complex is unknown. METHODS: Cygb knockout mice homozygous for the rd8 mutation (Cygb-/-rd8/rd8) were screened for ocular abnormalities and imaged using optical coherence tomography and fundus photography. Electroretinography was performed, as was histology and immunohistochemistry. Quantitative PCR was used to determine the effect of Cygb deficiency on transcription of Crb1 related cell polarity genes. RESULTS: Cygb-/-rd8/rd8 mice develop an abnormal retina with severe lamination abnormalities. The retina undergoes progressive degeneration with the ventral retina more severely affected than the dorsal retina. Cygb expression is in neurons of the retinal ganglion cell layer and inner nuclear layer. Immunohistochemical studies suggest that cell death predominates in the photoreceptors. Electroretinography amplitudes show reduced a- and b-waves, consistent with photoreceptor disease. Cygb deficient retinas had only modest transcriptional perturbations of Crb1-related cell polarity genes. Cygb-/- mice without the rd8 mutation did not exhibit obvious retinal abnormalities. CONCLUSIONS: Cygb is necessary for retinal lamination, maintenance of cell polarity, and photoreceptor survival in rd8 mice. These results are consistent with Cygb as a disease modifying gene in Crb1-related retinopathy. Further studies are necessary to investigate the role of Cygb in the human retina.


Subject(s)
Cytoglobin/genetics , Nerve Tissue Proteins/metabolism , Retinal Degeneration/metabolism , Animals , Cytoglobin/metabolism , Disease Models, Animal , Eye Proteins/genetics , Female , Homozygote , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Retina/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/physiopathology , Retinal Ganglion Cells/metabolism
2.
Invest Ophthalmol Vis Sci ; 58(3): 1709-1718, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28324111

ABSTRACT

Purpose: Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Methods: Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Results: Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Conclusions: Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/etiology , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Animals , DNA/genetics , DNA Mutational Analysis , Disease Models, Animal , Electroretinography , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Ophthalmoscopy , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL