Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37967462

ABSTRACT

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Subject(s)
Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Protein Domains , Histones/metabolism , Cell Cycle Proteins/metabolism
2.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36378954

ABSTRACT

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Subject(s)
Lysine , Transcription Factors , Humans , Lysine/metabolism , Ligands , Protein Domains , Histones/metabolism
3.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34995458

ABSTRACT

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Subject(s)
Aminoquinolines/chemistry , Drug Design , Proteins/metabolism , Administration, Oral , Aminoquinolines/metabolism , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Animals , Benzoates/chemistry , Benzoates/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Half-Life , Humans , Male , Mice , Molecular Conformation , Molecular Dynamics Simulation , Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Rats , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 12(8): 1308-1317, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413961

ABSTRACT

Bromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology. Key to this work was the introduction and modulation of the basicity of a pendant amine which had a substantial impact on not only bromodomain selectivity but also cellular target engagement.

5.
ACS Infect Dis ; 7(8): 2238-2249, 2021 08 13.
Article in English | MEDLINE | ID: mdl-33203208

ABSTRACT

The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Epigenesis, Genetic , Escherichia coli , Humans , Ligands , Trypanosoma cruzi/genetics
6.
J Med Chem ; 63(11): 5816-5840, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32410449

ABSTRACT

Non-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-molecule ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) methyl mimetics to take advantage of the differential stability of conserved water molecules in the bromodomain binding site. Discovery of the n-butyl group as an atypical KAc methyl mimetic allowed generation of 31 (GSK6776) as a soluble, permeable, and selective BRD7/9 inhibitor from a pyridazinone template. The n-butyl group was then used to enhance the bromodomain selectivity of an existing BRD9 inhibitor and to transform pan-bromodomain inhibitors into BRD7/9 selective compounds. Finally, a solvent-exposed vector was defined from the pyridazinone template to enable bifunctional molecule synthesis, and affinity enrichment chemoproteomic experiments were used to confirm several of the endogenous protein partners of BRD7 and BRD9, which form part of the chromatin remodeling PBAF and BAF complexes, respectively.


Subject(s)
Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Lysine/chemistry , Pyridazines/chemistry , Transcription Factors/antagonists & inhibitors , Binding Sites , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , Humans , Ligands , Molecular Dynamics Simulation , Protein Structure, Tertiary , Pyridazines/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism
7.
Org Lett ; 22(4): 1659-1664, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31999132

ABSTRACT

Malonoyl peroxide 6 is an effective reagent for the syn- or anti-oxyamination of alkenes. Reaction of 6 and an alkene in the presence of O-tert-butyl-N-tosylcarbamate (R3 = CO2tBu) leads to the anti-oxyaminated product in up to 99% yield. Use of O-methyl-N-tosyl carbamate (R3 = CO2Me) as the nitrogen nucleophile followed by treatment of the product with trifluoroacetic acid leads to the syn-oxyaminated product in up to 77% yield. Mechanisms consistent with the observed selectivities are proposed.

8.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31904959

ABSTRACT

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Subject(s)
High-Throughput Screening Assays/methods , Proteins/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Chemokine CCL2/biosynthesis , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , Drug Synergism , Humans , Interleukin-6/antagonists & inhibitors , Leukocytes/drug effects , Male , Mice , Models, Molecular , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries
9.
ChemMedChem ; 14(4): 362-385, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30624862

ABSTRACT

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.


Subject(s)
Molecular Probes/chemistry , Proteins/chemistry , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Antigens, Nuclear/metabolism , DNA-Binding Proteins , Humans , Molecular Probes/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Phylogeny , Protein Domains , Proteins/classification , Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism
10.
ACS Chem Biol ; 13(10): 2862-2867, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30200762

ABSTRACT

P300/CBP-associated factor (PCAF) and general control nonderepressible 5 (GCN5) are closely related epigenetic proteins, each containing an acetyltransferase domain and a bromodomain. Consistent with reported roles for these proteins in immune function, we find that PCAF-deficient macrophages exhibit a markedly reduced ability to produce cytokines upon stimulation with lipopolysaccharide (LPS). Investigating the potential to target this pathway pharmacologically, we show that chemical inhibition of the PCAF/GCN5 bromodomains is insufficient to recapitulate the diminished inflammatory response of PCAF-deficient immune cells. However, by generating the first PCAF/GCN5 proteolysis targeting chimera (PROTAC), we identify small molecules able to degrade PCAF/GCN5 and to potently modulate the expression of multiple inflammatory mediators in LPS-stimulated macrophages and dendritic cells. Our data illustrate the power of the PROTAC approach in the context of multidomain proteins, revealing a novel anti-inflammatory therapeutic opportunity for targeting PCAF/GCN5.


Subject(s)
Benzoates/pharmacology , Piperidines/pharmacology , Pyridazines/pharmacology , p300-CBP Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Benzoates/chemical synthesis , Benzoates/chemistry , Cell Differentiation/drug effects , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Macrophages/metabolism , Mice , Monocytes/metabolism , Peptide Hydrolases/metabolism , Piperidines/chemical synthesis , Piperidines/chemistry , Protein Domains , Proteolysis , Pyridazines/chemical synthesis , Pyridazines/chemistry , Stereoisomerism , Ubiquitin-Protein Ligases , p300-CBP Transcription Factors/chemistry
11.
Bioorg Med Chem ; 26(11): 2937-2957, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29776834

ABSTRACT

Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½â€¯= 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½â€¯= 388 min).


Subject(s)
Nuclear Proteins/chemistry , Transcription Factors/chemistry , Biological Assay , Blotting, Western , Cell Cycle Proteins , Crystallography, X-Ray , Drug Stability , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Inhibitory Concentration 50 , Ligands , Luciferases/chemistry , MCF-7 Cells , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
13.
J Med Chem ; 60(2): 695-709, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28002667

ABSTRACT

p300/CREB binding protein associated factor (PCAF/KAT2B) and general control nonderepressible 5 (GCN5/KAT2A) are multidomain proteins that have been implicated in retroviral infection, inflammation pathways, and cancer development. However, outside of viral replication, little is known about the dependence of these effects on the C-terminal bromodomain. Herein, we report GSK4027 as a chemical probe for the PCAF/GCN5 bromodomain, together with GSK4028 as an enantiomeric negative control. The probe was optimized from a weakly potent, nonselective pyridazinone hit to deliver high potency for the PCAF/GCN5 bromodomain, high solubility, cellular target engagement, and ≥18000-fold selectivity over the BET family, together with ≥70-fold selectivity over the wider bromodomain families.


Subject(s)
Histone Acetyltransferases/chemistry , Molecular Probes/chemistry , Piperidines/chemistry , Pyridazines/chemistry , p300-CBP Transcription Factors/chemistry , Animals , Cell Membrane Permeability , Humans , Membranes, Artificial , Mice , Molecular Probes/chemical synthesis , Piperidines/chemical synthesis , Protein Domains , Pyridazines/chemical synthesis , Stereoisomerism , Structure-Activity Relationship
14.
Curr Opin Chem Biol ; 33: 58-66, 2016 08.
Article in English | MEDLINE | ID: mdl-27295577

ABSTRACT

Bromodomains have emerged as an exciting target class for drug discovery over the past decade. Research has primarily focused on the bromodomain and extra terminal (BET) family of bromodomains, which has led to the development of multiple small molecule inhibitors and an increasing number of clinical assets. The excitement centred on the clinical potential of BET inhibition has stimulated intense interest in the broader family and the growing number of non-BET bromodomain chemical probes has facilitated phenotypic investigations, implicating these targets in a variety of disease pathways including cancer, inflammation, embryonic development and neurological disorders.


Subject(s)
Proteins/chemistry , Small Molecule Libraries/chemistry , Clinical Trials as Topic , Drug Discovery , Humans , Models, Molecular , Molecular Probes
15.
ACS Chem Biol ; 11(7): 2002-10, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27197014

ABSTRACT

The 2-oxoglutarate-dependent dioxygenase target class comprises around 60 enzymes including several subfamilies with relevance to human disease, such as the prolyl hydroxylases and the Jumonji-type lysine demethylases. Current drug discovery approaches are largely based on small molecule inhibitors targeting the iron/2-oxoglutarate cofactor binding site. We have devised a chemoproteomics approach based on a combination of unselective active-site ligands tethered to beads, enabling affinity capturing of around 40 different dioxygenase enzymes from human cells. Mass-spectrometry-based quantification of bead-bound enzymes using a free-ligand competition-binding format enabled the comprehensive determination of affinities for the cosubstrate 2-oxoglutarate and for oncometabolites such as 2-hydroxyglutarate. We also profiled a set of representative drug-like inhibitor compounds. The results indicate that intracellular competition by endogenous cofactors and high active site similarity present substantial challenges for drug discovery for this target class.


Subject(s)
Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Proteomics
16.
J Med Chem ; 59(4): 1357-69, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26771107

ABSTRACT

Optimization of KDM6B (JMJD3) HTS hit 12 led to the identification of 3-((furan-2-ylmethyl)amino)pyridine-4-carboxylic acid 34 and 3-(((3-methylthiophen-2-yl)methyl)amino)pyridine-4-carboxylic acid 39 that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds 34 and 39 possess activity, IC50 ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥ 50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC50 = 6-8 µM). Compounds 34 and 39 are also potent inhibitors of KDM5C (JARID1C) (RFMS IC50 = 100-125 nM).


Subject(s)
Enzyme Inhibitors/chemistry , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Pyridines/chemistry , Amination , Cell Line , Cell Membrane Permeability , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Histone Demethylases/chemistry , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Models, Molecular , Pyridines/pharmacokinetics , Pyridines/pharmacology
17.
J Med Chem ; 59(4): 1370-87, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26771203

ABSTRACT

Following the discovery of cell penetrant pyridine-4-carboxylate inhibitors of the KDM4 (JMJD2) and KDM5 (JARID1) families of histone lysine demethylases (e.g., 1), further optimization led to the identification of non-carboxylate inhibitors derived from pyrido[3,4-d]pyrimidin-4(3H)-one. A number of exemplars such as compound 41 possess interesting activity profiles in KDM4C and KDM5C biochemical and target-specific, cellular mechanistic assays.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Cell Line , Cell Membrane Permeability , Crystallography, X-Ray , Enzyme Inhibitors/pharmacokinetics , Histone Demethylases/chemistry , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Models, Molecular , Molecular Docking Simulation , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship
18.
ChemMedChem ; 11(5): 477-87, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26749027

ABSTRACT

The bromodomain and extra terminal (BET) family of bromodomains have been the focus of extensive research, leading to the development of many potent, selective chemical probes and recent clinical assets. The profound biology associated with BET bromodomain inhibition has provided a convincing rationale for targeting bromodomains for the treatment of disease. However, the BET family represents just eight of the at least 56 human bromodomains identified to date. Until recently, there has been significantly less interest in non-BET bromodomains, leaving a vast area of research and the majority of this new target class yet to be thoroughly investigated. It has been widely reported that several non-BET bromodomain containing proteins are associated with various diseases including cancer and HIV. Therefore, the development of chemical probes for non-BET bromodomains will facilitate elucidation of their precise biological roles and potentially lead to the development of new medicines. This review summarises the progress made towards the development of non-BET bromodomain chemical probes to date. In addition, we highlight the potential for future work in this new and exciting area.


Subject(s)
Bromine/chemistry , Molecular Probes , Animals , Crystallography, X-Ray , Humans , Phylogeny
19.
J Med Chem ; 59(4): 1425-39, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-25856009

ABSTRACT

Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.


Subject(s)
Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , Cell Line , Crystallography, X-Ray , Drug Discovery , Humans , Models, Molecular , Molecular Docking Simulation , Transcription Factors/chemistry
20.
Org Lett ; 17(20): 5132-5, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26425839

ABSTRACT

Malonoyl peroxide 1, prepared in a single step from the commercially available diacid, is an effective reagent for the anti-dihydroxylation of alkenes. Reaction of 1 with an alkene in the presence of acetic acid at 40 °C followed by alkaline hydrolysis leads to the corresponding diol (35-92%) with up to 13:1 anti-selectivity. A mechanism consistent with experimental findings is proposed that accounts for the selectivity observed.


Subject(s)
Alkenes/chemistry , Malonates/chemistry , Peroxides/chemistry , Alcohols/chemistry , Biological Products/chemistry , Indicators and Reagents , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...