Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 29(8): 1343-1351, 2019 08.
Article in English | MEDLINE | ID: mdl-31186303

ABSTRACT

Eukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA cis targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis. The system has a transcription factor-DNA interaction discovery rate twice as high as the conventional diploid-mating approach and a processing time nearly one-tenth of the haploid-transformation method. The system also offers the highest accuracy in identifying TF-DNA interactions that can be authenticated in vivo by chromatin immunoprecipitation. With these unique features, this meiosis-directed Y1H system is particularly suited for constructing novel and comprehensive genome-scale gene regulatory networks for various organisms.


Subject(s)
DNA/genetics , Microarray Analysis/methods , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Two-Hybrid System Techniques , Animals , DNA/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Genetic Markers , Humans , Meiosis , Microarray Analysis/instrumentation , Plasmids/chemistry , Plasmids/metabolism , Ploidies , Populus/cytology , Protein Binding , Protoplasts/cytology , Protoplasts/metabolism , Saccharomyces cerevisiae/metabolism , Time Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...