Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 107: 105273, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146693

ABSTRACT

BACKGROUND: De novo amino acid substitutions (DNS) frequently emerge among immunocompromised patients with chronic SARS-CoV-2 infection. While previous studies have reported these DNS, their significance has not been systematically studied. METHODS: We performed a review of DNS that emerged during chronic SARS-CoV-2 infection. We searched PubMed until June 2023 using the keywords "(SARS-CoV-2 or COVID-19) and (mutation or sequencing) and ((prolonged infection) or (chronic infection) or (long term))". We included patients with chronic SARS-CoV-2 infection who had SARS-CoV-2 sequencing performed for at least 3 time points over at least 60 days. We also included 4 additional SARS-CoV-2 patients with chronic infection of our hospital not reported previously. We determined recurrent DNS that has appeared in multiple patients and determined the significance of these mutations among epidemiologically-significant variants. FINDINGS: A total of 34 cases were analyzed, including 30 that were published previously and 4 from our hospital. Twenty two DNS appeared in ≥3 patients, with 14 (64%) belonging to lineage-defining mutations (LDMs) of epidemiologically-significant variants and 10 (45%) emerging among chronically-infected patients before the appearance of the corresponding variant. Notably, nsp9-T35I substitution (Orf1a T4175I) emerged in all three patients with BA.2.2 infection in 2022 before the appearance of Variants of Interest that carry nsp9-T35I as LDM (EG.5 and BA.2.86/JN.1). Structural analysis suggests that nsp9-T35I substitution may affect nsp9-nsp12 interaction, which could be critical for the function of the replication and transcription complex. INTERPRETATION: DNS that emerges recurrently in different chronically-infected patients may be used as a marker for potential epidemiologically-significant variants. FUNDING: Theme-Based Research Scheme [T11/709/21-N] of the Research Grants Council (See acknowledgements for full list).

2.
Heliyon ; 10(15): e35334, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39166006

ABSTRACT

The COVID-19 pandemic has had a major impact on global health and economy, which was significantly mitigated by the availability of COVID-19 vaccines. The levels of systemic and mucosal antibodies against SARS-CoV-2 correlated with protection. However, there is limited data on how vaccine type and booster doses affect mucosal antibody response, and how the breadth of mucosal and systemic antibodies compares. In this cross-sectional study, we compared the magnitude and breadth of mucosal and systemic antibodies in 108 individuals who received either the BNT162b2 (Pfizer) or CoronaVac (SinoVac) vaccine. We found that BNT162b2 (vs CoronaVac) or booster doses (vs two doses) were significantly associated with higher serum IgG levels, but were not significantly associated with salivary IgA levels, regardless of prior infection status. Among non-infected individuals, serum IgG, serum IgA and salivary IgG levels were significantly higher against the ancestral strain than the Omicron BA.2 sublineage, but salivary IgA levels did not differ between the strains. Salivary IgA had the weakest correlation with serum IgG (r = 0.34) compared with salivary IgG (r = 0.63) and serum IgA (r = 0.60). Our findings suggest that intramuscular COVID-19 vaccines elicit a distinct mucosal IgA response that differs from the systemic IgG response. As mucosal IgA independently correlates with protection, vaccine trials should include mucosal IgA as an outcome measure.

3.
JGH Open ; 8(7): e13039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006099

ABSTRACT

Background and Aim: Currently, SARS-CoV-2 is still spreading rapidly and globally. A large proportion of patients with COVID-19 developed liver injuries. The human-induced pluripotent stem cell (iPSC)-derived hepatocytes recapitulate primary human hepatocytes and have been widely used in studies of liver diseases. Methods: To explore the susceptibility of hepatocytes to SARS-CoV-2, we differentiated iPSCs to functional hepatocytes and tried infecting them with different MOI (1, 0.1, 0.01) of SARS-CoV-2. Results: The iPSC-derived hepatocytes are highly susceptible to virus infection, even at 0.01 MOI. Other than the ancestral strain, iHeps also support the replication of SARS-CoV-2 variants including alpha, beta, theta, and delta. More interestingly, the ACE2 expression significantly upregulated after infection, suggesting a vicious cycle between virus infection and liver injury. Conclusions: The iPSC-derived hepatocytes can support the replication of SARS-CoV-2, and this platform could be used to investigate the SARS-CoV-2 hepatotropism and hepatic pathogenic mechanisms.

4.
Lancet Infect Dis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39025098

ABSTRACT

BACKGROUND: Remdesivir (Veklury, Gilead Sciences, Foster City, CA, USA) and nirmatrelvir-ritonavir (Paxlovid, Pfizer, New York, NY, USA) were reported to improve the outcome of patients with mild-to-moderate COVID-19 symptoms. Preclinical data suggest that nirmatrelvir-ritonavir might be more effective than remdesivir alone or in combination with nirmatrelvir-ritonavir for people at high risk of severe COVID-19. We aimed to assess the safety and effectiveness of combining remdesivir and nirmatrelvir-ritonavir compared with using each drug alone for adults hospitalised with COVID-19. METHODS: In this target trial emulation study, we used electronic health records of patients aged 18 years or older who received either combination treatment of nirmatrelvir-ritonavir and remdesivir or monotherapy of either drug between March 16 and Dec 31, 2022, within 5 days of hospitalisation for COVID-19 in Hong Kong. Inverse probability of treatment weighting was applied to balance baseline patient characteristics across the treatment groups. The primary outcome was all-cause mortality. Cox proportional hazards regression adjusting weighting was used to compare the risk of all-cause mortality, intensive care unit (ICU) admission, or ventilatory support for 90 days of follow-up between groups. FINDINGS: Between March 16 and Dec 31, 2022, 18 196 participants were identified from electronic health records and assigned to receive remdesivir (n=4232), nirmatrelvir-ritonavir (n=13 656), or nirmatrelvir-ritonavir and remdesivir (n=308). By applying an inverse probability of treatment weighting, a weighted sample composed of 18 410 recipients of nirmatrelvir-ritonavir and remdesivir combination treatment, 18 178 recipients of remdesivir monotherapy, and 18 287 recipients of nirmatrelvir-ritonavir monotherapy was obtained. After a median follow-up of 84 days (IQR 45-90), risk of mortality was lower in patients who received nirmatrelvir-ritonavir monotherapy (hazard ratio [HR] 0·18 [95% CI 0·15 to 0·20]; absolute risk reduction [ARR] -16·33% [95% CI -16·98 to -15·68]) or remdesivir and nirmatrelvir-ritonavir combination therapy (HR 0·66 [95% CI 0·49 to 0·89]; ARR -6·52% [95% CI -7·29 to -5·74]) than in patients who received remdesivir monotherapy. Similar results were observed for ICU admission or ventilatory support (nirmatrelvir-ritonavir monotherapy: HR 0·09 [95% CI 0·07 to 0·11]; ARR -10·04% [95% CI -10·53 to -9·56]; combination therapy: HR 0·68 [95% CI 0·42 to 1·12]; ARR -3·24% [95% CI -3·84 to -2·64]). Compared with combination therapy, nirmatrelvir-ritonavir monotherapy was associated with lower risk of mortality (HR 0·27 [95% CI 0·20 to 0·37]; ARR -9·81% [95% CI -10·39 to -9·24]) and ICU admission or ventilatory support (HR 0·13 [95% CI 0·08 to 0·22]; ARR -6·80% [95% CI -7·22 to -6·39]). INTERPRETATION: Our study highlighted the potential for reduced risk of mortality, ICU admission, or the need for ventilatory support in patients hospitalised with COVID-19 treated with nirmatrelvir-ritonavir as a monotherapy compared with treatment regimens based on nirmatrelvir-ritonavir and remdesivir combination therapy or remdesivir monotherapy. Further randomised controlled trials are needed to support the validity of the current results. FUNDING: The Health and Medical Research Fund Commissioned Research on COVID-19. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

5.
Int J Infect Dis ; 146: 107149, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38909928

ABSTRACT

OBJECTIVES: To evaluate the difference between BNT162b2 and CoronaVac in vaccine effectiveness and safety. METHODS: This target trial emulation study included individuals aged ≥12 during 2022. Propensity score matching was applied to ensure group balance. The Cox proportional hazard model was used to compare the effectiveness outcomes including COVID-19 infection, severity, 28-day hospitalization, and 28-day mortality after infection. Poisson regression was used for safety outcomes including 32 adverse events of special interests between groups. RESULTS: A total of 639,818 and 1804,388 individuals were identified for the 2-dose and 3-dose comparison, respectively. In 2-dose and 3-dose comparison, the hazard ratios (95% confidence intervals [CI]) were 0.844 [0.833-0.856] and 0.749 [0.743-0.755] for COVID-19 infection, 0.692 [0.656-0.731] and 0.582 [0.559-0.605] for hospitalization, 0.566 [0.417-0.769] and 0.590 [0.458-0.76] for severe COVID-19, and 0.563 [0.456-0.697] and 0.457 [0.372-0.561] for mortality for BNT162b2 recipients versus CoronaVac recipients, respectively. Regarding safety, 2-dose BNT162b2 recipients had a significantly higher incidence of myocarditis (incidence rate ratio [IRR] [95% CI]: 8.999 [1.14-71.017]) versus CoronaVac recipients, but the difference was insignificant in 3-dose comparison (IRR [95% CI]: 2.000 [0.500-7.996]). CONCLUSION: BNT162b2 has higher effectiveness among individuals aged ≥12 against COVID-19-related outcomes for SARS-CoV-2 omicron compared to CoronaVac, with almost 50% lower mortality risk.


Subject(s)
BNT162 Vaccine , COVID-19 , Hospitalization , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/mortality , COVID-19/epidemiology , BNT162 Vaccine/administration & dosage , Male , Female , Middle Aged , Adult , Hong Kong/epidemiology , Adolescent , Hospitalization/statistics & numerical data , Aged , Young Adult , Vaccine Efficacy , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Child , Vaccines, Inactivated
6.
Drug Saf ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916712

ABSTRACT

BACKGROUND: Immunocompromised individuals are at high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent severe or fatal coronavirus disease 2019 (COVID-19), yet they have suboptimal responses to mRNA and inactivated COVID-19 vaccines. The efficacy of tixagevimab-cilgavimab in reducing symptomatic SARS-CoV-2 infection was demonstrated in phase III clinical trials. Nevertheless, real-world data on the effectiveness and safety of tixagevimab-cilgavimab remain limited. OBJECTIVE: The aim was to evaluate the effectiveness and safety of tixagevimab-cilgavimab among immunocompromised individuals. METHODS: Adults who were immunocompromised or receiving immunosuppressive therapies were included in this target trial emulation using territory-wide electronic health records in Hong Kong. A sequential trial emulation approach was adopted to compare effectiveness and safety outcomes between individuals who received tixagevimab-cilgavimab and individuals who did not. RESULTS: A total of 746 tixagevimab-cilgavimab recipients and 2980 controls were included from 1 May 2022 to 30 November 2022. Tixagevimab-cilgavimab significantly reduced the risk of COVID-19 infection (hazard ratio [HR] 0.708, 95% confidence interval [CI] 0.527-0.951) during a median follow-up of 60 days. No significant difference was observed in the risk of COVID-19-related hospitalisation. Zero versus eight COVID-19 mortality cases and zero versus two severe COVID-19 cases were observed in tixagevimab-cilgavimab recipients and controls, respectively. Notably, significant risk reduction in COVID-19 infection was also observed among immunocompromised individuals who had been previously vaccinated with three or more doses of COVID-19 vaccine, or had no prior COVID-19 infection history. CONCLUSIONS: Tixagevimab-cilgavimab was effective in reducing COVID-19 infection among immunocompromised patients during the Omicron wave. Findings were consistent among individuals who previously received three or more doses of COVID-19 vaccine, or had no previous history of COVID-19 infection.

7.
Kidney Dis (Basel) ; 10(2): 107-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751793

ABSTRACT

Background: A three-dose regimen is the current standard for COVID-19 vaccination, but systematic data on immunogenicity and safety in chronic kidney disease patients remains limited. Objectives: We conducted a meta-analysis on the immunogenicity and safety of three-dose COVID-19 vaccination in patients on renal replacement therapy (RRT). Methods: Systematic literature search in four electronic databases yielded twenty eligible studies (2,117 patients, 94% of whom received mRNA vaccines) for meta-analysis. Results: The overall seropositivity rate of anti-SARS-CoV-2 was 74.2% (95% CI: 65.0-83.4%) after three-dose COVID-19 vaccination. The seropositivity rate of anti-SARS-CoV-2 in kidney transplant recipients (KTRs) was 64.6% (95% CI: 58.7-70.5%), and 43.5% (95% CI: 38.5-48.6%) of non-responders after second dose became seropositive after third dose. The seropositivity rate of anti-SARS-CoV-2 was 92.9% (95% CI: 89.5-96.2%) in dialysis patients, and 64.6% (95% CI: 46.8-82.3%) of non-responders after second dose became seropositive after third dose. In KTRs, each year increase in transplant vintage was associated with 35.6% increase in anti-SARS-CoV-2 seropositivity (95% CI: 15.9-55.4%, p = 0.01). There were no serious adverse events attributed to vaccination in KTRs, and the commonest local and systemic adverse events were injection site pain and fatigue, respectively. Conclusion: Three-dose COVID-19 vaccination regimen in patients on RRT is associated with reduced immunogenicity, especially in KTRs. There are no adverse events associated with third-dose COVID-19 vaccine in KTRs.

8.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675747

ABSTRACT

BACKGROUND: Neutralizing antibody level wanes with time after COVID-19 vaccination. We aimed to study the relationship between baseline gut microbiota and immunogenicity after three doses of CoronaVac. METHODS: This was a prospective cohort study recruiting three-dose CoronaVac recipients from two centers in Hong Kong. Blood samples were collected at baseline and one year post-first dose for virus microneutralization (vMN) assays to determine neutralization titers. The primary outcome was high immune response (defined as with vMN titer ≥ 40). Shotgun DNA metagenomic sequencing of baseline fecal samples identified potential bacterial species and metabolic pathways using Linear Discriminant Analysis Effect Size (LEfSe) analysis. Univariate and multivariable logistic regression models were used to identify high response predictors. RESULTS: In total, 36 subjects were recruited (median age: 52.7 years [IQR: 47.9-56.4]; male: 14 [38.9%]), and 18 had low immune response at one year post-first dose vaccination. Eubacterium rectale (log10LDA score = 4.15, p = 0.001; relative abundance of 1.4% vs. 0, p = 0.002), Collinsella aerofaciens (log10LDA score = 3.31, p = 0.037; 0.39% vs. 0.18%, p = 0.038), and Streptococcus salivarius (log10LDA score = 2.79, p = 0.021; 0.05% vs. 0.02%, p = 0.022) were enriched in low responders. The aOR of high immune response with E. rectale, C. aerofaciens, and S. salivarius was 0.03 (95% CI: 9.56 × 10-4-0.32), 0.03 (95% CI: 4.47 × 10-4-0.59), and 10.19 (95% CI: 0.81-323.88), respectively. S. salivarius had a positive correlation with pathways enriched in high responders like incomplete reductive TCA cycle (log10LDA score = 2.23). C. aerofaciens similarly correlated with amino acid biosynthesis-related pathways. These pathways all showed anti-inflammation functions. CONCLUSION: E. rectale,C. aerofaciens, and S. salivarius correlated with poorer long-term immunogenicity following three doses of CoronaVac.

9.
Clin Immunol ; 263: 110205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575044

ABSTRACT

Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.


Subject(s)
COVID-19 , Iron , Proteome , SARS-CoV-2 , COVID-19/immunology , Humans , Animals , SARS-CoV-2/immunology , Mice , Iron/metabolism , Proteomics/methods , Transferrin/metabolism , Metalloproteins/immunology , Metalloproteins/metabolism , Male , Female , Biomarkers/blood , Biomarkers/metabolism , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology , Interleukin-10/immunology , Interleukin-10/metabolism , Middle Aged
10.
Virus Res ; 345: 199371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621598

ABSTRACT

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted for three years. Coinfection with seasonal influenza may occur resulting in more severe diseases. The interaction between these two viruses for infection and the effect of antiviral treatment remains unclear. METHODS: A SARS-CoV-2 and influenza H1N1 coinfection model on Calu-3 cell line was established, upon which the simultaneous and sequential coinfection was evaluated by comparing the viral load. The efficacy of molnupiravir and baloxavir against individual virus and coinfection were also studied. RESULTS: The replication of SARS-CoV-2 was significantly interfered when the influenza virus was infected simultaneously or in advance (p < 0.05). On the contrary, the replication of the influenza virus was not affected by the SARS-CoV-2. Molnupiravir monotherapy had significant inhibitory effect on SARS-CoV-2 when the concentration reached to 6.25 µM but did not show any significant anti-influenza activity. Baloxavir was effective against influenza within the dosage range and showed significant effect of anti-SARS-CoV-2 at 16 µM. In the treatment of coinfection, molnupiravir had significant effect for SARS-CoV-2 from 6.25 µM to 100 µM and inhibited H1N1 at 100 µM (p < 0.05). The tested dosage range of baloxavir can inhibit H1N1 significantly (p < 0.05), while at the highest concentration of baloxavir did not further inhibit SARS-CoV-2, and the replication of SARS-CoV-2 significantly increased in lower concentrations. Combination treatment can effectively inhibit influenza H1N1 and SARS-CoV-2 replication during coinfection. Compared with molnupiravir or baloxavir monotherapy, combination therapy was more effective in less dosage to inhibit the replication of both viruses. CONCLUSIONS: In coinfection, the replication of SARS-CoV-2 would be interfered by influenza H1N1. Compared with molnupiravir or baloxavir monotherapy, treatment with a combination of molnupiravir and baloxavir should be considered for early treatment in patients with SARS-CoV-2 and influenza coinfection.


Subject(s)
Antiviral Agents , COVID-19 , Coinfection , Dibenzothiepins , Influenza A Virus, H1N1 Subtype , Influenza, Human , SARS-CoV-2 , Viral Load , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Coinfection/drug therapy , Coinfection/virology , Virus Replication/drug effects , Dibenzothiepins/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , COVID-19/virology , Viral Load/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , Cell Line , Morpholines/pharmacology , Morpholines/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use , COVID-19 Drug Treatment , Hydroxylamines/pharmacology , Hydroxylamines/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use , Cytidine/analogs & derivatives
11.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534697

ABSTRACT

The rebound characteristics of respiratory infections after lifting pandemic control measures were uncertain. From January to November 2023, patients presenting at a teaching hospital were tested for common respiratory viruses and Mycoplasma pneumoniae using a combination of antigen, nucleic acid amplification, and targeted next-generation sequencing (tNGS) tests. The number and rate of positive tests per month, clinical and microbiological characteristics were analyzed. A rapid rebound of SARS-CoV-2 was followed by a slower rebound of M. pneumoniae, with an interval of 5 months between their peaks. The hospitalization rate was higher, with infections caused by respiratory viruses compared to M. pneumoniae. Though the pediatric hospitalization rate of respiratory viruses (66.1%) was higher than that of M. pneumoniae (34.0%), the 4094 cases of M. pneumoniae within 6 months posed a huge burden on healthcare services. Multivariate analysis revealed that M. pneumoniae-infected adults had more fatigue, comorbidities, and higher serum C-reactive protein, whereas children had a higher incidence of other respiratory pathogens detected by tNGS or pathogen-specific PCR, fever, and were more likely to be female. A total of 85% of M. pneumoniae-positive specimens had mutations detected at the 23rRNA gene, with 99.7% showing A2063G mutation. Days to defervescence were longer in those not treated by effective antibiotics and those requiring a change in antibiotic treatment. A delayed but significant rebound of M. pneumoniae was observed after the complete relaxation of pandemic control measures. No unusual, unexplained, or unresponsive cases of respiratory infections which warrant further investigation were identified.

13.
Nat Rev Endocrinol ; 20(6): 336-348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38347167

ABSTRACT

The COVID-19 pandemic has affected over 772 million people globally. While lung damage is the major contributor to the morbidity and mortality of this disease, the involvement of multiple organs, including the endocrine glands, has been reported. This Review aims to provide an updated summary of evidence regarding COVID-19 and thyroid dysfunction, incorporating highlights of recent advances in the field, particularly in relation to long COVID and COVID-19 vaccination. Since subacute thyroiditis following COVID-19 was first reported in May 2020, thyroid dysfunction associated with COVID-19 has been increasingly recognized, secondary to direct and indirect effects on the hypothalamic-pituitary-thyroid axis. Here, we summarize the epidemiological evidence, pattern and clinical course of thyroid dysfunction following COVID-19 and examine radiological, molecular and histological evidence of thyroid involvement in SARS-CoV-2 infection. Beyond acute SARS-CoV-2 infection, it is also timely to examine the course and implication of thyroid dysfunction in the context of long COVID owing to the large population of survivors of COVID-19 worldwide. This Review also analyses the latest evidence on the relationship between the therapeutics and vaccination for COVID-19 and thyroid dysfunction. To conclude, evidence-based practice recommendations for thyroid function testing during and following COVID-19 and concerning COVID-19 vaccination are proposed.


Subject(s)
COVID-19 , SARS-CoV-2 , Thyroid Diseases , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Thyroid Diseases/epidemiology , Thyroid Diseases/physiopathology , COVID-19 Vaccines , Thyroid Gland/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL