Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Food Chem ; 449: 139235, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583405

ABSTRACT

Acidic electrolyzed oxidizing water (AEOW) was applied to suppress disease development and maintain good quality of fresh fruit. However, the involvement of AEOW in improving disease resistance of fresh longan remains unknown. Here, transcriptomic and metabolic analyses were performed to compare non-treated and AEOW-treated longan during storage. The transcriptome analysis showed AEOW-induced genes associated with phenylpropanoid and flavonoid biosynthesis. The metabolome analysis found the contents of coumarin, phenolic acid, and tannin maintained higher levels in AEOW-treated longan than non-treated longan. Moreover, the weighted correlation network analysis (WGCNA) was performed to identify hub genes, and a gene-metabolite correlation network associated with AEOW-improved disease resistance in longan was constructed by the co-analysis of transcriptomics and metabolomics. These findings identified a series of important genes and metabolites involving in AEOW-induced disease resistance of longan fruit, expanding our knowledges on fruit disease resistance and quality maintenance at the transcript and metabolic levels.


Subject(s)
Fruit , Metabolome , Transcriptome , Water , Fruit/chemistry , Fruit/metabolism , Fruit/genetics , Water/metabolism , Water/analysis , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Electrolysis , Gene Expression Regulation, Plant , Oxidation-Reduction , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Food Chem ; 449: 139175, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593723

ABSTRACT

Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.


Subject(s)
Fruit , Plant Diseases , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Fruit/chemistry , Fruit/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oxidation-Reduction , Membrane Lipids/metabolism , Ascomycota/chemistry , Water/metabolism , Lipid Peroxidation/drug effects , Lipid Metabolism , Electrolysis
3.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445793

ABSTRACT

This study undertakes a comprehensive exploration of the impact of slightly acidic electrolyzed water (SAEW) on Listeria monocytogenes, a common foodborne pathogen, with a particular focus on understanding the molecular mechanisms leading to the viable but nonculturable (VBNC) state. Given the widespread application of SAEW as an effective disinfectant in the food industry, uncovering these molecular pathways is crucial for improving food safety measures. We employed tandem mass tags (TMT), labeling proteomic techniques and LC-MS/MS to identify differentially expressed proteins under two doses of SAEW conditions. We indicated 203 differential expressed proteins (DEPs), including 78 up-regulated and 125 down-regulated DEPs. The functional enrichment analysis of these proteins indicated that ribosomes, biosynthesis of secondary metabolites, and aminoacyl-tRNA biosynthesis were enriched functions affected by SAEW. Further, we delved into the role of protein chlorination, a potential consequence of reactive chlorine species generated during the SAEW production process, by identifying 31 chlorinated peptides from 22 proteins, with a dominant sequence motif of Rxxxxx[cY] and functionally enriched in translation. Our findings suggest that SAEW might prompt alterations in the protein translation process and trigger compensatory ribosome biosynthesis. However, an imbalance in the levels of elongation factors and AARSs could hinder recovery, leading to the VBNC state. This research carries substantial implications for food safety and sanitation, as it adds to our understanding of the SAEW-induced VBNC state in L. monocytogenes and offers potential strategies for its control.


Subject(s)
Listeria monocytogenes , Water , Water/chemistry , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Acids/pharmacology , Electrolysis , Hydrogen-Ion Concentration
4.
J Hazard Mater ; 445: 130561, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055970

ABSTRACT

Water disinfection and food pasteurization are critical to reducing waterborne and foodborne diseases, which have been a pressing public health issue globally. Electrified treatment processes are emerging and have become promising alternatives due to the low cost of electricity, independence of chemicals, and low potential to form by-products. Electric field treatment (EFT) is a physical pathogen inactivation approach, which damages cell membrane by irreversible electroporation. EFT has been studied for both water disinfection and food pasteurization. However, no study has systematically connected the two fields with an up-to-date review. In this article, we first provide a comprehensive background of microbial control in water and food, followed by the introduction of EFT. Subsequently, we summarize the recent EFT studies for pathogen inactivation from three aspects, the processing parameters, its efficacy against different pathogens, and the impact of liquid properties on the inactivation performance. We also review the development of novel configurations and materials for EFT devices to address the current challenges of EFT. This review introduces EFT from an engineering perspective and may serve as a bridge to connect the field of environmental engineering and food science.


Subject(s)
Food , Water , Chemical Phenomena , Electricity
5.
Food Chem ; 404(Pt A): 134572, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36265275

ABSTRACT

Longan fruit loses its market value rapidly due to postharvest pathogenic infestation and quality deterioration. Here, we hypothesized that acidic electrolyzed water (AEW) could maintain higher quality of P. longanae-inoculated longans via regulating energy metabolism. Results indicated that AEW reduced fruit disease index and decay incidence. Significantly, AEW treatment retained higher levels of ATP, ADP, and energy charge, and higher activities of Ca2+-ATPase, Mg2+-ATPase, and H+-ATPase in the membranes of plasma, vacuole, and mitochondria, which maintained the structural and functional integrity of cell membrane. Furthermore, indirectly sustaining cell membrane function via AEW treatment could maintain the storability and quality properties of longans, including keeping higher values of color chromaticity (L*, a*, and b*), higher amounts of vitamin C, total soluble solids, sucrose, and total soluble sugars, lower titratable acid and reducing sugar contents. This work elucidated the potential regulation of AEW on the balance of energy metabolism and fruit quality.


Subject(s)
Fruit , Water Purification , Fruit/chemistry , Energy Metabolism , Acids/analysis , Adenosine Triphosphatases/metabolism
6.
Food Sci Nutr ; 10(6): 1830-1840, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35702292

ABSTRACT

The effects of lipid peroxidation products 4-Hydroxy-2-nonenal (4-HNE) and 4-oxo-2-nonenal (4-ONE) were evaluated using bovine heart mitochondria. Oxygen consumption rate (OCR), ultrastructure, antioxidant activity, and membrane permeability were examined to compare their effects on isolated mitochondria from beef cardiac muscle. For the mitochondrial morphology, the final concentration of mitochondria and 4-ONE or 4-HNE in the reaction tube were 10 mg/ml and 1 mM, respectively. For the OCR experiment, mitochondria (2.5 mg/ml) were incubated with 0.20 mM ONE or in a Clark electrode chamber at 25°C. Mitochondrial membrane permeability was determined by incubating 0.5 mg/ml of mitochondrial protein with either 0.05 mM ONE or HNE or ethanol control at pH 5.6 and 7.4 at 25°C. Transmission electron microscopy (TEM) revealed that the size of 4-ONE treated mitochondria at pH 7.4 increased (p < .05), as did permeability (p < .05), unlike ethanol controls. However, mitochondria incubated with 4-ONE at pH 5.6 showed a decrease in volume (p < .05). Incubating mitochondria with 4-ONE at pH 5.6 and pH increased oxygen consumption rate 7.4 caused less oxygen consumption than either 4-HNE treatment or ethanol control. The hydrogen peroxide assay (H2O2), ferric reducing antioxidant properties (FRAP), and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+) assays revealed that 4-ONE is a more potent inhibitor of the endogenous antioxidant system of mitochondria than 4-HNE (p < .05).

7.
Food Chem X ; 13: 100265, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35498983

ABSTRACT

Effects of acidic electrolyzed water (AEW) treatment (pH = 2.5, ACC = 80 mg L-1, 10 min) on pulp firmness, amounts of CWM and CWP, activities and expression of relevant genes of CWDEs in pulp of Fuyan longan during storage at 25 °C were evaluated. Compared to control samples, during storage, AEW-treated fruit retained a higher pulp firmness, prevented WSP formation, reduced the degradation of CSP, cellulose and hemicellulose, and lowered CWDEs activities and their corresponding gene expression. When stored for 5 d, pulp firmness (113.6 g mm-1), CWM (13.9 g kg-1), and CSP (1.4 g kg-1) in AEW-treated fruit displayed the clearly higher contents than those in control samples. These data suggest that AEW treatment can slow down the pulp softening and retain higher pulp CWP levels in postharvest fresh longans, which was because AEW lowered activities of CWDEs and its gene expression levels, and maintained the cell wall structure's integrity.

8.
Foods ; 11(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35267405

ABSTRACT

ε-poly-l-lysine (ε-PL) holds a strong antibacterial property and is widely used for food preservation. However, the application of ε-PL to enhance fruit disease resistance in postharvest longans (Dimocarpus longan Lour.) has not been explored. The objective of this study was to explore the impact of ε-PL treatment on disease occurrence and energy metabolism of longans infected with Phomopsis longanae Chi (P. longanae). It was found that, in comparison with P. longanae-inoculated longans, ε-PL could decrease the fruit disease index and adenosine monophosphate (AMP) content, increase the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and energy charge, and enhance the activities of adenosine triphosphatase (ATPase) (such as H+-, Mg2+-, and Ca2+-ATPase) in the mitochondria, protoplasm, and vacuole. The results suggest that the higher levels of ATPase activity and energy status played essential roles in disease resistance of postharvest longan fruit. Therefore, the ε-PL treatment can be used as a safe and efficient postharvest method to inhibit the disease occurrence of longan fruit during storage at room temperature.

9.
Food Chem ; 369: 130873, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34479004

ABSTRACT

With the growing demand for safe and nutritious foods, some novel food nonthermal sterilization technologies were developed in recent years. Electrolyzed oxidizing water (EOW) has the characteristics of strong antimicrobial ability, wide sterilization range, and posing no threat to the humans and environment. Furthermore, EOW can be used as a green disinfectant to replace conventional production water used in the food industry since it can be converted to the ordinary water after sterilization. This review summarizes recent developments of the EOW technology in food industry. It also reviews the preparation principles, physical and chemical characteristics, antimicrobial mechanisms of EOW, and inactivation of toxins using EOW. In addition, this study highlights the applications of EOW in food preservation and safety control, as well as the future prospects of this novel technology. EOW is a promising nonthermal sterilization technology that has great potential for applications in the food industry.


Subject(s)
Disinfectants , Water , Electrolysis , Humans , Oxidation-Reduction , Sterilization
11.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233512

ABSTRACT

The development of innovative antimicrobial materials is crucial in thwarting infectious diseases caused by microbes, as drug-resistant pathogens are increasing in both number and capacity to detoxify the antimicrobial drugs used today. An ideal antimicrobial material should inhibit a wide variety of bacteria in a short period of time, be less or not toxic to normal cells, and the fabrication or synthesis process should be cheap and easy. We report a one-step microwave-assisted hydrothermal synthesis of mixed composite CuxFeyOz (Fe2O3/Cu2O/CuO/CuFe2O) nanoparticles (NPs) as an excellent antimicrobial material. The 1 mg/mL CuxFeyOz NPs with the composition 36% CuFeO2, 28% Cu2O and 36% Fe2O3 have a general antimicrobial activity greater than 5 log reduction within 4 h against nine important human pathogenic bacteria (including drug-resistant bacteria as well as Gram-positive and Gram-negative strains). For example, they induced a >9 log reduction in Escherichia coli B viability after 15 min of incubation, and an ~8 log reduction in multidrug-resistant Klebsiella pneumoniae after 4 h incubation. Cytotoxicity tests against mouse fibroblast cells showed about 74% viability when exposed to 1 mg/mL CuxFeyOz NPs for 24 h, compared to the 20% viability for 1 mg/mL pure Cu2O NPs synthesized by the same method. These results show that the CuxFeyOz composite NPs are a highly efficient, low-toxicity and cheap antimicrobial material that has promising potential for applications in medical and food safety.

12.
Food Sci Nutr ; 8(8): 4379-4387, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884718

ABSTRACT

Black tea powder was used to make tea infusion using a Keuring coffee maker. Effect of tea particle size (0.30 or 0.60 mm), water volume for brewing (118, 177, or 236 ml), and the amount of tea powder (1.0, 1.5, or 2.0 g) on tea infusion quality were evaluated. The concentration of four chemical compounds (soluble sugars, total amino acids, polyphenols, and caffeine) in tea infusion was measured. In general, the concentration of the four compounds in tea infusion increased with the amount of tea powder used and decreased with increasing water volume and tea particle size. Using 2.0 g of 0.30 mm tea powder and 118 ml of water per brew, the concentration of the above four components was 412.3, 251.6, 208.9, and 205.3 µg/ml, respectively, and higher than tea infusion prepared by traditional method (312.4, 204.1, 211.6, and 175.9 µg/ml). The highest extraction efficiency (mg/cup.g) for the four chemical components per unit weight of tea powder was at using 1.0 g of 0.30 mm tea powder with 236 ml water for soluble sugars (32.3 µg/ml) and caffeine (16.3 µg/ml), at using 1.5 g tea powders for polyphenols (22.3 µg/ml) and at using 2.0 g tea powders for amino acid (13.6 µg/ml). This study suggested using a single-serve coffee maker can be a convenient and effective way to prepare the tea infusion with high quality.

13.
Carbohydr Polym ; 242: 116427, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32564850

ABSTRACT

Longan (Dimocarpus longan Lour.) is prone to pulp softening and pulp breakdown, leading to a loss of its nutrients including polysaccharides. ROS is one main factor affecting fruit quality. This work intended to explicate the influences of hydrogen peroxide, acting as a ROS, on pulp softening, pulp breakdown, and cell wall polysaccharides metabolism in longan fruit during storage. Contrasted to the control group, hydrogen peroxide-treated samples exhibited lower firmness, lower amounts of CWM, ISP, CSP, hemicellulose and cellulose, but higher breakdown index, WSP amount, expression levels of DlPG, DlPE, Dlß-Gal, DlCx and DlXET and activities of their corresponding enzymes (PG, PE, ß-Gal, Cx, XET). These results suggested that hydrogen peroxide reduced longan pulp firmness due to the increased gene expression levels and enzymes activities related to cell wall polysaccharide degradation to boost their decomposition, thereby led to the accelerated pulp softening and the expedited pulp breakdown of harvested longans.


Subject(s)
Cell Wall/drug effects , Fruit/drug effects , Hydrogen Peroxide/pharmacology , Polysaccharides/metabolism , Sapindaceae/drug effects , Carbohydrate Metabolism/drug effects , Cell Wall/metabolism , Food Storage , Fruit/metabolism , Sapindaceae/metabolism
14.
Food Chem ; 320: 126641, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32213424

ABSTRACT

The aim of this study was to use acidic electrolyzed water (AEW) to treat longan fruit and evaluate the effects of AEW treatment on storability, quality attributes and nutritive properties of longans during storage. The data indicated that, as compared to the control samples, AEW treatment could effectively reduce the respiration rate and pericarp cell membrane permeability, retard the occurrences of pericarp browning, pulp breakdown and fruit disease, keep a higher rate of commercially acceptable fruit. Additionally, AEW treatment could suppress the decrease of chromaticity values of L*, a* and b* of the fruit surface, keep higher amounts of pericarp carotenoid, chlorophyll, flavonoid and anthocyanin, maintain higher amounts of pulp total soluble solid (TSS), total soluble sugars, sucrose and vitamin C. These results demonstrated that AEW treatment at pH of 2.5, ACC of 80 mg/L could maintain higher quality attributes and nutritive properties, and display better storability of harvested longans.


Subject(s)
Sapindaceae/chemistry , Acids/chemistry , Anthocyanins/chemistry , Electrolytes , Fruit/chemistry , Water/chemistry
15.
J Food Sci ; 85(3): 755-761, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32078747

ABSTRACT

Efficacy of pulsed ultraviolet (PUV) to inactivate Salmonella pure culture and on inoculated black peppercorns was evaluated. Black peppercorns inoculated with Salmonella were subjected to PUV treatment (0.28 J/cm2 /pulse) using two different sample holders, on a traditional flat surface or on a wave-shaped surface to increase surface exposure of peppercorns to PUV through light reflection. The temperature change on black peppercorns surface during treatment was recorded, and the effect of cooling period during PUV treatment was studied. PUV treatment of two pulses reduced Salmonella population by more than 6 log CFU/mL in phosphate-buffered saline. Continuous PUV treatment (80 pulses on each side) using a wave-shaped surface was able to reduce Salmonella by 1.9 log CFU/g; same treatment using flat surface reduced Salmonella by less than 1.5 log CFU/g. The temperature on peppercorns surface increased to 65 °C after 80 pulses continuous PUV treatment. Adding 280 s cooling time after every 20 pulses reduced the temperature from 65 to 40 °C and achieved similar Salmonella inactivation (P > 0.05) as the continuous PUV treatment. Results from this study showcase the effectiveness of PUV treatment for reducing Salmonella level on black peppercorns surface and provided insights on the potential implementation of PUV treatment at the industrial level. PRACTICAL APPLICATION: Results from this study showcased the effectiveness of PUV treatment for reducing Salmonella level on black peppercorns surface and provided insights on the potential implementation of PUV treatment at the industrial level.


Subject(s)
Food Irradiation/methods , Piper nigrum/microbiology , Salmonella/radiation effects , Colony Count, Microbial , Food Microbiology , Microbial Viability/radiation effects , Salmonella/growth & development , Temperature , Ultraviolet Rays
16.
J Food Prot ; 82(12): 2016-2022, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31692394

ABSTRACT

Bactericidal effects of various concentrations of phenyllactic acid on Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, O26:H11, O103:H2, and O121:H19, and on Salmonella Typhimurium DT104 in pure culture and microplates assays were studied. Beef cuts were surface sprayed with phenyllactic acid or lactic acid for inactivation of E. coli O157:H7 and Salmonella Typhimurium. The 1.5% phenyllactic acid inactivated all inoculated E. coli O157:H7, O26:H11, O103:H2, and O121:H19 and Salmonella Typhimurium DT104 (>6-log reduction) within 1 min of contact at 21°C, whereas 1.5% lactic acid did not result in microbial reduction. Microplate assays (for STEC and Salmonella Typhimurium DT104 at 10 to 100 CFU per well) indicated that concentrations of 0.25% phenyllactic acid or 0.25% lactic acid inhibited the growth of STEC and Salmonella Typhimurium DT104 incubated at 37°C for 24 h. Treatment of beef with 1.5% lactic acid or 1.5% phenyllactic acid reduced E. coli O157:H7 by 0.22 and 0.38 log CFU/cm2, respectively, within 5 min and reduced Salmonella Typhimurium DT104 by 0.12 and 0.86 log CFU/cm2, respectively. When meat treated with 1.5% phenyllactic acid was frozen at -20°C, inactivation of E. coli O157 and Salmonella Typhimurium DT104 was enhanced by 1.06 and 1.46 log CFU/cm2, respectively. Thus, treatment of beef with 1.5% phenyllactic acid significantly reduced the population of E. coli O157:H7 and Salmonella.


Subject(s)
Escherichia coli O157 , Food Microbiology , Lactates , Red Meat , Salmonella typhimurium , Shiga-Toxigenic Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/standards , Cattle , Colony Count, Microbial , Escherichia coli O157/drug effects , Food Microbiology/methods , Lactates/pharmacology , Lactic Acid/pharmacology , Microbial Viability/drug effects , Red Meat/microbiology , Salmonella typhimurium/drug effects
17.
Food Res Int ; 120: 425-431, 2019 06.
Article in English | MEDLINE | ID: mdl-31000258

ABSTRACT

Activated persulfate, a relatively new advanced oxidation process, has gained attention for its potential to ensure fresh produce safety. One of the major advantages is to avoid the formation of toxic chlorinated disinfection byproducts which are concerns for chlorine-based sanitizers. This study was aimed to investigate the efficacy of ferrous and alkaline activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes, with the primary focus on the effect of initial persulfate concentration, the effect of gradual addition of ferrous ion, and the stability of activated persulfate. The prepared 5-strain pathogen cocktails were treated by activated persulfate for 60 or 120 s. Sodium thiosulfate combined with phosphate buffer was used to quench the reaction. Both pathogens were plated onto non-selective agars for colony enumeration. The steady-state concentrations of sulfate and hydroxyl radicals were quantified in each activation conditions. The results showed higher initial persulfate concentration can lead to more pathogen reductions. About 8.50 log CFU/mL reduction was observed in 120 s after the initial persulfate concentration was increased to 80 mmol/L (ferrous activation on both pathogens) or 600 mmol/L (alkaline activation on L. monocytogenes). Gradual addition of ferrous ion into persulfate solution achieved more pathogen reductions than adding all ferrous ion at once. However, only the increases of reductions achieved by four sequential addition were significant (P < 0.05). In addition, the steady-state concentrations of both sulfate and hydroxyl radicals were found to be positively correlated with microbial reductions at all conditions. Furthermore, the pathogen inactivation efficacy of both ferrous and alkaline activated persulfate can be maintained for a relatively long period (up to 3 h).


Subject(s)
Escherichia coli O157/drug effects , Listeria monocytogenes/drug effects , Sulfates/pharmacology , Chlorine/pharmacology , Colony Count, Microbial , Disinfectants/pharmacology , Disinfection , Food Contamination/prevention & control , Food Handling/methods , Food Microbiology , Hydroxyl Radical/pharmacology
18.
Foods ; 8(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987306

ABSTRACT

Colloidal stability as well as physicochemical and rheological properties are among the critical determinants of the sensory quality of beverages. The present study investigated the effects of lecithin, xanthan gum, propylene glycol alginate, and their combinations on the colloidal stability and physicochemical/rheological properties of a model peanut-based beverage. A simplex centroid mixture design was applied, and the visual stability, centrifuge stability, physicochemical properties (soluble solids, pH, water activity, color), and rheological parameters (flow behavior and viscosity) of the samples were determined. All the evaluated parameters were significantly affected (p < 0.05) by the type and quantity of emulsifier or stabilizer used. At the 0.5% total usage level, the optimum stabilizer and emulsifier combination was that of 66% xanthan gum and 34% lecithin. A further increase of lecithin in the mixture caused a decrease in the colloidal stability of the sample. Irrespective of emulsifier and stabilizer type and quantity, all samples exhibited shear-thinning flow behavior, with samples containing xanthan gum being more pseudoplastic than the others. The prediction model for the visual stability index found in this study may be used by the industry to formulate similar beverages for better colloidal stability.

19.
Food Chem ; 270: 229-235, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30174039

ABSTRACT

This study aimed to investigate the effects of acidic electrolyzed oxidizing water (AEW) treatment on storability and metabolism of reactive oxygen species (ROS) in blueberries cv. 'Brightwell' during storage at 4 °C. Results showed that, compared with the control blueberries, AEW treated-blueberries exhibited lower incidence of fruit decay, higher rate of commercially acceptable fruit, higher fruit firmness and skin hardness, and higher anthocyanin and total phenolics contents, along with higher activities of SOD, CAT and APX, higher antioxidant activity, but lower generation rate of superoxide anion and cell membrane permeability. These results demonstrated that AEW treatment for enhancing storability of harvested blueberries during storage may be mediated by regulating ROS metabolism, manifested as AEW increasing ROS scavenging capacity and reducing ROS accumulation, and thereby maintained the structural integrity of cellular membrane, which indicated that AEW treatment was a facile postharvest method for extending the shelf life of harvested blueberries.


Subject(s)
Blueberry Plants/chemistry , Food Storage/methods , Reactive Oxygen Species/metabolism , Anthocyanins , Antioxidants , Fruit , Water
20.
J Agric Food Chem ; 67(2): 606-614, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30576129

ABSTRACT

Changes in the content of bioactive phytochemicals in the broccoli sprouts subjected to different slightly acidic electrolyzed water (SAEW) treatments were investigated in the present study. The highest sulforaphane amount in broccoli sprouts treated with SAEW with an available chlorine concentration (ACC) of 50 mg/L was 11.49 mg/g in dry weight (DW), which increased by 61.2% compared to the control. SAEW treatment enhanced the sulforaphane content mainly by increasing the glucoraphanin (GRA) concentration due to the promotion of methionine metabolism and increased myrosinase activities. In addition, the relative anthocyanin contents of light-germinated broccoli under SAEW 50 treatment were 2.03 times that of broccoli sprouts with tap water treatment, and these contents were associated with an increase in phenylalanine ammonia lyase (PAL) activities and phenylalanine participation in biosynthesis. In summary, SAEW promotes metabolism to induce the accumulation of bioactive compounds in broccoli sprouts.


Subject(s)
Brassica/metabolism , Phytochemicals/chemistry , Water/chemistry , Anthocyanins/analysis , Anthocyanins/metabolism , Brassica/chemistry , Brassica/growth & development , Electrolysis , Germination , Glucosinolates/analysis , Glucosinolates/metabolism , Hydrogen-Ion Concentration , Imidoesters/analysis , Imidoesters/metabolism , Isothiocyanates/analysis , Isothiocyanates/metabolism , Oximes , Phytochemicals/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Sulfoxides , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...