Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569791

ABSTRACT

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
2.
Int J Pharm ; 581: 119251, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32209367

ABSTRACT

There is a mounting crisis in treatment of bacterial diseases. The appearance of nosocomial infections produced by multi-drug resistant bacteria is rapidly increasing and at the same time the pharmaceutical industry has been abandoning new antibiotic discovery. To help understand why, we investigated the decision-making processes behind three novel antibiotics that were initially discovered in the late 1980's and early 1990's: daptomycin, linezolid, and lysobactin. Each antibiotic was investigated by two highly qualified scientific organizations that came to opposing opinions regarding the clinical utility and commercial potential of the drug. After reviewing the literature and interviewing key scientific staff members working on each of these molecules, we have identified factors needed to generate positive development decisions. Organizational factors included decision timing, therapeutic area focus, organizational support for risk taking and the presence of a project champion. Technical factors included investment in the optimization of dosing for improved drug exposure, toxicological evaluation of the purified eutomer from a diastereomer and the failure to develop an effective research formulation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Decision Making , Drug Discovery/organization & administration , Drug Industry/organization & administration , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Daptomycin/chemistry , Daptomycin/pharmacology , Daptomycin/therapeutic use , Depsipeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial , Humans , Linezolid/chemistry , Linezolid/pharmacology , Linezolid/therapeutic use , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...