Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Phys Chem Chem Phys ; 26(16): 12453-12466, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38625536

ABSTRACT

The impact of ionic liquids (ILs) on polar reactions is well recognised, however the impact of ILs on non-polar reactions is less well understood or explored. Pericyclic Cope rearrangements are highly concerted, exhibit minimal charge localisation and pass through an uncharged but well-defined transition state, and thus provide a good mechanism for exploring the impact of IL polarizability on chemical reactivity. Recently, a 10× rate enhancement has been observed for the Cope rearrangement of 3-phenyl-1,5-hexadiene in the IL 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] compared to benzene. In this work we undertake a DFT based computational study (B3LYP-D3BJ/6-311+G(d,p) and M06-2X-D3/6-311+G(d,p)) of the Cope rearrangement of 3-phenyl-1,5-hexadiene and 3-propyl-hexa-1,5-diene in molecular solvents (acetonitrile, benzene and ethanol) and the IL [C4C1im][NTf2] using the SMD solvation model. The impact of benzene and [C4C1im][NTf2] on the Cope rearrangement of 3-phenyl-1,5-hexadiene is studied in more detail and we provide insight into the reason for the rate enhancement in an IL. The volume of activation is evaluated and the potential impact of 'solvent pressure' is discussed. We identify two potential mechanisms for volume effects to contribute to the rate enhancement. Solvent association energies are evaluated at the DLNPO-CCSD(T) level. Specific solvent interactions are explored through atomic partial charge, molecular orbital and bond critical point analysis, as well as via non-colvalent interaction (NCI) plots, electrostatic potential (ESP) differences and density difference Δρ(r) plots. We find that the cation and anion together form an extensive van der Waals pocket in-which the transition state (TS) sits. Electron density within the TS is anisotropically polarised via a 'push-pull' effect due to the dual cation-anion nature of the IL, stabilising the TS relative to benzene. We also provide experimental evidence that these effects are generalisable to other ILs. Overall, our aim is to provide a deeper moleuclar level understanding of the impact of ILs on non-polar reactions.

2.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592230

ABSTRACT

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Subject(s)
Benzhydryl Compounds , Phenols , Humans , Food Safety , No-Observed-Adverse-Effect Level , Systematic Reviews as Topic
3.
J Endocr Soc ; 7(9): bvad107, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37873497

ABSTRACT

The European Food Safety Authority (EFSA) has revised their estimate of the toxicity of bisphenol A (BPA) and, as a result, have recommended reducing the tolerable daily intake (TDI) by 20 000-fold. This would essentially ban the use of BPA in food packaging such as can liners, plastic food containers, and in consumer products. To come to this conclusion, EFSA used a systematic approach according to a pre-established protocol and included all guideline and nonguideline studies in their analysis. They found that Th-17 immune cells increased with very low exposure to BPA and used this endpoint to revise the TDI to be human health protective. A number of regulatory agencies including the European Medicines Agency (EMA) have written formal disagreements with several elements of EFSA's proposal. The European Commission will now decide whether to accept EFSA's recommendation over the objections of EMA. If the Commission accepts EFSA's recommendation, it will be a landmark action using knowledge acquired through independent scientific studies focused on biomarkers of chronic disease to protect human health. The goal of this Perspective is to clearly articulate the monumental nature of this debate and decision and to explain what is at stake. Our perspective is that the weight of evidence clearly supports EFSA's proposal to reduce the TDI by 20 000-fold.

4.
J Nat Prod ; 86(3): 526-532, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36795480

ABSTRACT

Here we describe the isolation and characterization of stictamycin, a new aromatic polyketide with activity against Staphylococcus aureus. Stictamycin was identified following metabolic profiling and bioactivity guided fractionation of organic extracts from Streptomyces sp. 438-3, an isolate from the New Zealand lichen Sticta felix. Comprehensive 1D and 2D NMR analyses were performed to determine the planar structure of stictamycin and relative configurations of stereo centers, with subsequent comparison of experimental and theoretical ECD spectra allowing elucidation of the absolute configuration. Whole-genome sequencing and biosynthetic gene cluster (BGC) analysis revealed that the Streptomyces sp. 438-3 strain contains an atypical type II polyketide (T2PKS) BGC capable of assembling polycyclic-aromatic ring skeletons. Cloning and knockout studies of this T2PKS BGC were used to confirm that it is responsible for the biosynthesis of stictamycin and elucidate a plausible biosynthetic scheme.


Subject(s)
Lichens , Polyketides , Streptomyces , Streptomyces/chemistry , Polyketides/chemistry , Lichens/genetics , Anti-Bacterial Agents/chemistry , New Zealand , Multigene Family
5.
Phys Chem Chem Phys ; 25(8): 6436-6453, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36779955

ABSTRACT

Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.

7.
Chem Commun (Camb) ; 58(21): 3505-3508, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35195124

ABSTRACT

Guanidinium chloride-based solvents have been prepared using deep eutectic solvent principles. Strong hydrogen-bond (H-bond) donating abilities are established based on a range of measures of solvent polarity, including a novel 31P NMR chemical shift method. The physical properties and origin of the strong H-bonding ability of these solvents have been explored.

8.
Phys Chem Chem Phys ; 24(5): 3144-3162, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35040843

ABSTRACT

The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.

9.
PLoS One ; 16(11): e0258717, 2021.
Article in English | MEDLINE | ID: mdl-34731176

ABSTRACT

There remains a large gender imbalance in the science, technology, engineering and mathematics (STEM) workforce deriving from a leaky pipeline where women start losing interest and confidence in science and engineering as early as primary school. To address this disparity, the Science Research & Engineering Program (SREP) at Hathaway Brown School was established in 1998 to engage and expose their all-female high school students to STEM fields through an internship-like multi-year research experience at partnering institutions. We compare data from existing Hathaway Brown School SREP alumnae records from 1998-2018 (n = 495) to Non-SREP students and national datasets (National Center for Educational Statistics, National Science Foundation, and US Census data) to assess how SREP participation may influence persistence in the STEM pipeline and whether SREP alumnae attribute differences in these outcomes to the confidence and skill sets they learned from the SREP experience. The results reveal that women who participate in the SREP are more likely to pursue a major in a STEM field and continue on to a STEM occupation compared to non-SREP students, national female averages, and national subsets. Participants attribute their outcomes to an increase in confidence, establishment of technical and professional skills, and other traits strengthened through the SREP experience. These data suggest that implementing similar experiential programs for women in science and engineering at the high school stage could be a promising way to combat the remaining gender gap in STEM fields.


Subject(s)
Engineering/statistics & numerical data , Learning/physiology , Science/statistics & numerical data , Sexism , Adolescent , Adult , Engineering/standards , Female , Humans , Longitudinal Studies , Male , Mathematics/statistics & numerical data , Schools , Science/standards , Students , Technology/statistics & numerical data , Workforce , Young Adult
10.
Phys Chem Chem Phys ; 23(37): 21042-21064, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34522943

ABSTRACT

Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids - slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation-anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure-property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure-property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.

11.
J Chem Phys ; 155(1): 014501, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34241390

ABSTRACT

Bismuth containing compounds are of particular interest for optical or photo-luminescent applications in sensing, bio-imaging, telecommunications, and opto-electronics and as components in non-toxic extremely dense liquids. Bismuth(III) halometallates form highly colored novel ionic liquid based solvents for which experimental characterization and fundamental understanding are limited. In this work, Bismuth(III) halometallates incorporating chloride, bromide, and iodide have been studied via density functional theory employing B3LYP-D3BJ/aug-cc-pVDZ. Lone anions, and anions in clusters with sufficient 1-ethyl-3-methyl-imidazolium [C2C1Im]+ counter-cations to balance the charge, have been investigated in the gas- phase, and with polarizable continuum solvation. Evaluation of speciation profiles indicates that dimeric or trimeric anions are prevalent. In contrast to analogous Al systems, anions of higher charge (-2, -3) are present. Speciation profiles are similar, but not identical with respect to the halide. The Bi based anions [BimXn]x- in the gas phase and generalized solvation environment produce multiple low energy conformers; moreover, key structural interaction patterns emerge from an analysis of ion-pair and neutral-cluster structures (BimXn)x-(C2C1Im)x + for x = 1, 2, and 3. Cation-anion interactions are weak; with Coulombic and dispersion forces predominating, anion-π structures are favored, while significant hydrogen bonding does not occur. Anion to cation charge transfer is minimal, but mutual polarization is significant, leading to local positive regions in the anion electrostatic potential surface. The key features of experimental x-ray photoelectron, UV-Vis spectra, and Raman spectra are reproduced, validating the computational results and facilitating rationalization of key features.

12.
Prenat Diagn ; 41(5): 584-590, 2021 04.
Article in English | MEDLINE | ID: mdl-33484483

ABSTRACT

The physical exchange of DNA between homologs, crossing-over, is essential to orchestrate the unique, reductional first meiotic division (MI). In females, the events of meiotic recombination that serve to tether homologs and facilitate their disjunction at MI occur during fetal development, preceding the MI division by several decades in our species. Data from studies in humans and mice demonstrate that placement of recombination sites during fetal development influences the likelihood of an MI nondisjunction event that results in the production of an aneuploid egg. Here we briefly summarize what we know about the relationship between aneuploidy and meiotic recombination and important considerations for the future of human assisted reproduction.


Subject(s)
Aneuploidy , Crossing Over, Genetic/genetics , Meiosis/genetics , Crossing Over, Genetic/physiology , Humans , Meiosis/physiology
13.
Am J Hum Genet ; 108(1): 16-24, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33306948

ABSTRACT

Failure of homologous chromosomes to recombine is arguably the most important cause of human meiotic nondisjunction, having been linked to numerous autosomal and sex chromosome trisomies of maternal origin. However, almost all information on these "exchangeless" homologs has come from genetic mapping studies of trisomic conceptuses, so the incidence of this defect and its impact on gametogenesis are not clear. If oocytes containing exchangeless homologs are selected against during meiosis, the incidence may be much higher in developing germ cells than in zygotes. To address this, we initiated studies of exchangeless chromosomes in fetal ovarian samples from elective terminations of pregnancy. In total, we examined more than 7,000 oocytes from 160 tissue samples, scoring for the number of foci per cell of the crossover-associated protein MLH1. We identified a surprisingly high level of recombination failure, with more than 7% of oocytes containing at least one chromosome pair that lacked an MLH1 focus. Detailed analyses indicate striking chromosome-specific differences, with a preponderance of MLH1-less homologs involving chromosomes 21 or 22. Further, the effect was linked to the overall level of recombination in the cell, with the presence of one or two exchangeless chromosomes in a cell associated with a 10%-20% reduction in the total number of crossovers. This suggests individuals with lower rates of meiotic recombination are at an increased risk of producing aneuploid offspring.


Subject(s)
Oogenesis/genetics , Recombination, Genetic/genetics , Adolescent , Adult , Aneuploidy , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 22/genetics , Female , Humans , Meiosis/genetics , MutL Protein Homolog 1/genetics , Nondisjunction, Genetic/genetics , Oocytes/physiology , Pregnancy , Young Adult
14.
Phys Chem Chem Phys ; 22(40): 23038-23056, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33047758

ABSTRACT

Ionic liquids are an attractive material class due to their wide liquid range, intrinsic ionic conductivity, and high chemical as well as electrochemical stability. However, the widespread use of ionic liquids is hindered by significantly higher viscosities compared to conventional molecular solvents. In this work, we show how the transport properties of ionic liquids can be altered significantly, even for isostructural ions that have the same backbone. To this end, structure-property relationships have been determined for a set of 16 systematically varied representative ionic liquids. Variations in molecular structure include ammonium vs. phosphonium, ether vs. alkyl side chains, and rigid vs. flexible anions. Ab initio calculations are used to relate molecular structures to the thermal, structural and transport properties of the ionic liquids. We find that the differences in properties of ether and alkyl functionalised ionic liquids are primarily dependent on minimum energy geometries, with the conformational flexibility of ether side chains appearing to be of secondary importance. We also show unprecedented correlations between anion conformational flexibility and transport properties. Critically, increasing fluidity upon consecutive introduction of ether side chains and phosphonium centres into the cation is found to be dependent on whether the anion is flexible or rigid. We demonstrate that targeted design of functional groups based on structure-property relationships can yield ionic liquids of exceptionally high fluidity.

15.
Am J Med Genet B Neuropsychiatr Genet ; 183(6): 331-340, 2020 09.
Article in English | MEDLINE | ID: mdl-32657040

ABSTRACT

Autism (or autism spectrum disorder [ASD]) is an often disabling childhood neurologic condition of mostly unknown cause. We previously explored whether there was an association of ASD with any analyte measured in the first newborn screening blood test. Here we explore the second screen. Our matched case-control study examined data on 3-5 year-old patients with any ASD diagnosis in the Texas Medicaid system in 2010-2012. Subjects were linked to their 2007-2009 newborn screening blood test data, which included values for 36 analytes or analyte ratios. Data were available for 3,005 cases and 6,212 controls. The most compelling associations were evident for fatty acid oxidation analytes octanoylcarnitine (C8) and octanoylcarnitine/acetylcarnitine (C8/C2). Their adjusted odds ratios comparing 10th versus first analyte deciles were between 1.42 and 1.54 in total births, term births, and males. C8 was consistent with first screen results. Adipylcarnitine (C6DC), an organic acid analyte, showed opposite results in the two screens. Several other analytes exhibiting significant associations in the first screen did not in the second. Our results provide evidence that abnormal newborn blood levels of some carnitines may be associated with risk of later ASD, possibly related to their involvement with mitochondrial function in the developing brain.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/epidemiology , Neonatal Screening/methods , Acetylcarnitine/analysis , Acetylcarnitine/blood , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autistic Disorder/blood , Biomarkers/blood , Carnitine/analogs & derivatives , Carnitine/analysis , Carnitine/blood , Case-Control Studies , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Odds Ratio , Texas/epidemiology
17.
Chem Sci ; 11(25): 6405-6422, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-35432848

ABSTRACT

The identification of specific design concepts for the in silico design of ionic liquids (ILs) has been accomplished using theoretical methods. Molecular building blocks, such as interchangeable functional groups, are used to design a priori new ILs which have subsequently been experimentally investigated. The conformational design concepts are developed by separately and systematically changing the central (imide), bridging (sulfonyl) and end (trifluoromethyl) group of the bis(trifluoromethanesulfonyl)imide [N(Tf)2]- anion and examining the resultant potential energy surfaces. It is shown that these design concepts can be used to tune separately the minimum energy geometry, transition state barrier height and relative stability of different conformers. The insights obtained have been used to design two novel anions for ILs, trifluoroacetyl(methylsulfonyl)imide [N(Ms)(TFA)]- and acetyl(trifluoromethanesulfonyl)imide [N(Tf)(Ac)]-. The computationally predicted structures show excellent agreement with experimental structures obtained from X-ray crystallography. [C4C1im][N(Tf)(Ac)] and [C4C1im][N(Ms)(TFA)] ILs have been synthesised and ion diffusion coefficients examined using pulsed field gradient stimulated echo NMR spectroscopy. Significantly increased diffusion was observed for the more flexible [N(Tf)(Ac)]- compared with the more rigid [N(Ms)(TFA)]- analogue. Furthermore, a pronounced impact on the fluidity was observed. The viscosity of the IL with the rigid anion was found to be twice as high as the viscosity of the IL with the flexible anion. The design concepts presented in this work will enable researchers in academia and industry to tailor anions to provide ILs with specific desired properties.

19.
Phys Chem Chem Phys ; 21(35): 18893-18910, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31441923

ABSTRACT

The atomic contributions to valence electronic structure for 37 ionic liquids (ILs) are identified using a combination of variable photon energy XPS, resonant Auger electron spectroscopy (RAES) and a subtraction method. The ILs studied include a diverse range of cationic and anionic structural moieties. We introduce a new parameter for ILs, the energy difference between the energies of the cationic and anionic highest occupied fragment orbitals (HOFOs), which we use to identify the highest occupied molecular orbital (HOMO). The anion gave rise to the HOMO for 25 of the 37 ILs studied here. For 10 of the ILs, the energies of the cationic and anionic HOFOs were the same (within experimental error); therefore, it could not be determined whether the HOMO was from the cation or the anion. For two of the ILs, the HOMO was from the cation and not from the anion; consequently it is energetically more favourable to remove an electron from the cation than the anion for these two ILs. In addition, we used a combination of area normalisation and subtraction of XP spectra to produce what are effectively XP spectra for individual ions; this was achieved for 10 cations and 14 anions.

20.
Eur J Cancer Care (Engl) ; 28(5): e13124, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31222849

ABSTRACT

OBJECTIVE: The aim of this study is to examine the relationship of empathy and professional quality of life in cancer healthcare professionals. METHODS: A Professional Quality of Life instrument measuring compassion satisfaction and compassion fatigue, and the Interpersonal Reactivity Index measuring empathy were distributed to healthcare professionals working in cancer care in the Republic of Ireland. Final analysis was conducted on 117 participants. RESULTS: A quarter of participants experience high levels of compassion satisfaction, and a quarter are at risk of compassion fatigue. A positive correlation was found between personal distress and compassion fatigue, and a negative correlation was found between personal distress and compassion satisfaction. A positive correlation was found between empathic concern and secondary traumatic stress. CONCLUSION: These findings suggest that healthcare professionals working in cancer care are at risk of compassion fatigue. Also, healthcare professionals working in cancer care experience personal distress that may impact negatively on professional quality of life. Implications for practice include a need to identify those HCPs who are at risk of compassion fatigue. The implication for further research suggests further exploration of the impact of personal distress felt by cancer healthcare professionals during empathic engagement.


Subject(s)
Allied Health Personnel/psychology , Burnout, Professional/psychology , Compassion Fatigue/psychology , Empathy , Neoplasms/therapy , Nurses/psychology , Oncologists/psychology , Adult , Allied Health Personnel/statistics & numerical data , Burnout, Professional/epidemiology , Compassion Fatigue/epidemiology , Cross-Sectional Studies , Female , Health Personnel/psychology , Health Personnel/statistics & numerical data , Humans , Ireland/epidemiology , Job Satisfaction , Male , Middle Aged , Nurses/statistics & numerical data , Oncology Nursing/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...