Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Med Sport ; 23(12): 1118-1127, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32507448

ABSTRACT

OBJECTIVES: Para athletes with brain impairment are affected by hypertonia, ataxia and athetosis, which adversely affect starting, sprinting and submaximal running. The aim was to identify and synthesise evidence from studies that have compared the biomechanics of runners with brain impairments (RBI) and non-disabled runners (NDR). DESIGN: Systematic review. METHODS: Five journal databases were systematically searched from inception to March 2020. Included studies compared the biomechanics of RBI (aged>14 years) and NDR performing either block-starts, sprinting, or submaximal running. RESULTS: Eight studies were included, analysing a total of 100 RBI (78M:22F; 18-38 years) diagnosed with either cerebral palsy (n=44) or traumatic brain injury (n=56). Studies analysed block-starts (n=3), overground sprinting (n=3) and submaximal running (n=2), and submaximal treadmill running (n=1). Horizontal velocity during starts, sprinting and self-selected submaximal speeds were lower in RBI. During sprinting and submaximal running, compared with NDR, RBI had shorter stride length, step length, and flight time, increased ground-contact time, increased cadence, and reduced ankle and hip range of motion. In submaximal running, RBI had decreased ankle-power generation at toe-off. CONCLUSIONS: There is limited research and small sample sizes in this area. However, preliminary evidence suggests that RBI had lower sprint speeds and biomechanical characteristics typical of submaximal running speeds in NDR, including increased ground-contact times and reduced stride length, step length, and flight times. Meaningful interpretation of biomechanical findings in RBI is impeded by impairment variability (type, severity and distribution), and methods which permit valid, reliable impairment stratification in larger samples are required.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Cerebral Palsy/physiopathology , Running/physiology , Sports for Persons with Disabilities/physiology , Ankle/physiopathology , Biomechanical Phenomena , Gait/physiology , Hip/physiopathology , Humans , Knee/physiopathology , Range of Motion, Articular
2.
J Sports Sci ; 30(4): 387-94, 2012.
Article in English | MEDLINE | ID: mdl-22214481

ABSTRACT

The three-dimensional kinematics of international female footballers performing a simulated direct free kick (curve kick) were compared with those of an instep kick. Reflective markers attached to the participants were tracked by 17 Vicon cameras sampling at 250 Hz. Foot velocity at ball impact did not differ between the two types of kick, but the way in which foot velocity was generated did differ, with instep kicks using a faster approach velocity and greater linear velocities of the hip and knee, and curve kicks using a greater knee angular velocity at impact. In both types of kick, peak knee angular velocity and peak ankle linear velocity occurred at ball impact, providing biomechanical support to the common coaching recommendation of kicking through the ball. To achieve a curved ball trajectory, players should take a wide approach angle, point the support foot to the right of the intended target (for right-footed players), swing the kicking limb across the face of the goal, and impact the ball with the foot moving upwards and in an abducted position. This information will be useful to coaches and players in identifying the fundamental coaching points necessary to achieve a curved trajectory of the ball compared with the more commonly described instep kick kinematics.


Subject(s)
Hip/physiology , Lower Extremity/physiology , Movement , Soccer/physiology , Task Performance and Analysis , Adolescent , Adult , Biomechanical Phenomena , Female , Humans , Sports Equipment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL