Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399014

ABSTRACT

(1) Background: Intracortical microelectrodes (IMEs) are an important part of interfacing with the central nervous system (CNS) and recording neural signals. However, recording electrodes have shown a characteristic steady decline in recording performance owing to chronic neuroinflammation. The topography of implanted devices has been explored to mimic the nanoscale three-dimensional architecture of the extracellular matrix. Our previous work used histology to study the implant sites of non-recording probes and showed that a nanoscale topography at the probe surface mitigated the neuroinflammatory response compared to probes with smooth surfaces. Here, we hypothesized that the improvement in the neuroinflammatory response for probes with nanoscale surface topography would extend to improved recording performance. (2) Methods: A novel design modification was implemented on planar silicon-based neural probes by etching nanopatterned grooves (with a 500 nm pitch) into the probe shank. To assess the hypothesis, two groups of rats were implanted with either nanopatterned (n = 6) or smooth control (n = 6) probes, and their recording performance was evaluated over 4 weeks. Postmortem gene expression analysis was performed to compare the neuroinflammatory response from the two groups. (3) Results: Nanopatterned probes demonstrated an increased impedance and noise floor compared to controls. However, the recording performances of the nanopatterned and smooth probes were similar, with active electrode yields for control probes and nanopatterned probes being approximately 50% and 45%, respectively, by 4 weeks post-implantation. Gene expression analysis showed one gene, Sirt1, differentially expressed out of 152 in the panel. (4) Conclusions: this study provides a foundation for investigating novel nanoscale topographies on neural probes.

2.
Nat Commun ; 14(1): 3132, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253728

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) and ER-phagy are two principal degradative mechanisms for ER proteins and aggregates, respectively; however, the crosstalk between these two pathways under physiological settings remains unexplored. Using adipocytes as a model system, here we report that SEL1L-HRD1 protein complex of ERAD degrades misfolded ER proteins and limits ER-phagy and that, only when SEL1L-HRD1 ERAD is impaired, the ER becomes fragmented and cleared by ER-phagy. When both are compromised, ER fragments containing misfolded proteins spatially coalesce into a distinct architecture termed Coalescence of ER Fragments (CERFs), consisted of lipoprotein lipase (LPL, a key lipolytic enzyme and an endogenous SEL1L-HRD1 substrate) and certain ER chaperones. CERFs enlarge and become increasingly insoluble with age. Finally, we reconstitute the CERFs through LPL and BiP phase separation in vitro, a process influenced by both redox environment and C-terminal tryptophan loop of LPL. Hence, our findings demonstrate a sequence of events centered around SEL1L-HRD1 ERAD to dispose of misfolded proteins in the ER of adipocytes, highlighting the profound cellular adaptability to misfolded proteins in the ER in vivo.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Adipocytes/metabolism
3.
Science ; 368(6486): 54-60, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32193362

ABSTRACT

The endoplasmic reticulum (ER) engages mitochondria at specialized ER domains known as mitochondria-associated membranes (MAMs). Here, we used three-dimensional high-resolution imaging to investigate the formation of pleomorphic "megamitochondria" with altered MAMs in brown adipocytes lacking the Sel1L-Hrd1 protein complex of ER-associated protein degradation (ERAD). Mice with ERAD deficiency in brown adipocytes were cold sensitive and exhibited mitochondrial dysfunction. ERAD deficiency affected ER-mitochondria contacts and mitochondrial dynamics, at least in part, by regulating the turnover of the MAM protein, sigma receptor 1 (SigmaR1). Thus, our study provides molecular insights into ER-mitochondrial cross-talk and expands our understanding of the physiological importance of Sel1L-Hrd1 ERAD.


Subject(s)
Adipocytes, Brown/physiology , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum-Associated Degradation/physiology , Mitochondria/metabolism , Mitochondrial Dynamics , Thermogenesis/physiology , Adipocytes, Brown/metabolism , Animals , Cold Temperature , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Mutant Strains , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Receptors, sigma/metabolism , Thermogenesis/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Sigma-1 Receptor
4.
J Vis Exp ; (155)2020 01 19.
Article in English | MEDLINE | ID: mdl-32009634

ABSTRACT

With advances in electronics and fabrication technology, intracortical microelectrodes have undergone substantial improvements enabling the production of sophisticated microelectrodes with greater resolution and expanded capabilities. The progress in fabrication technology has supported the development of biomimetic electrodes, which aim to seamlessly integrate into the brain parenchyma, reduce the neuroinflammatory response observed after electrode insertion and improve the quality and longevity of electrophysiological recordings. Here we describe a protocol to employ a biomimetic approach recently classified as nano-architecture. The use of focused ion beam lithography (FIB) was utilized in this protocol to etch specific nano-architecture features into the surface of non-functional and functional single shank intracortical microelectrodes. Etching nano-architectures into the electrode surface indicated possible improvements of biocompatibility and functionality of the implanted device. One of the benefits of using FIB is the ability to etch on manufactured devices, as opposed to during the fabrication of the device, facilitating boundless possibilities to modify numerous medical devices post-manufacturing. The protocol presented herein can be optimized for various material types, nano-architecture features, and types of devices. Augmenting the surface of implanted medical devices can improve the device performance and integration into the tissue.


Subject(s)
Nanoparticles/chemistry , Printing , Animals , Automation , Biomarkers/metabolism , Brain/pathology , Cell Count , Electrodes, Implanted , Electrophysiological Phenomena , Inflammation/pathology , Ions , Microelectrodes , Neurons/pathology , Rats , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...