Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Vis Exp ; (183)2022 05 05.
Article in English | MEDLINE | ID: mdl-35604169

ABSTRACT

Brain organoids are three-dimensional models of the developing human brain and provide a compelling, cutting-edge platform for disease modeling and large-scale genomic and drug screening. Due to the self-organizing nature of cells in brain organoids and the growing range of available protocols for their generation, issues with heterogeneity and variability between organoids have been identified. In this protocol paper, we describe a robust and replicable protocol that largely overcomes these issues and generates cortical organoids from neuroectodermal progenitors within 1 month, and that can be maintained for more than 1 year. This highly reproducible protocol can be easily carried out in a standard tissue culture room and results in organoids with a rich diversity of cell types typically found in the developing human cortex. Despite their early developmental make-up, neurons and other human brain cell types will start to exhibit the typical signs of senescence in neuronal cells after prolonged in vitro culture, making them a valuable and useful platform for studying aging-related neuronal processes. This protocol also outlines a method for detecting such senescent cells in cortical brain organoids using senescence-associated beta-galactosidase staining.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Brain , Drug Evaluation, Preclinical , Humans , Neurons
2.
Stem Cell Res ; 60: 102673, 2022 04.
Article in English | MEDLINE | ID: mdl-35074713

ABSTRACT

In this paper, we describe the generation and validation of human induced pluripotent stem cell (hiPSC) lines from peripheral blood mononuclear cells (PBMCs) from 6 epilepsy patients using a non-integrative Sendai virus vector. These human cellular models will enable patient-specific drug screening to improve outcomes for individuals with this disorder.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Cell Differentiation , Cellular Reprogramming , Drug Evaluation, Preclinical , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear , Sendai virus
3.
Stem Cell Res ; 56: 102564, 2021 10.
Article in English | MEDLINE | ID: mdl-34649201

ABSTRACT

Epilepsy is a common neurological disorder characterized by seizures. Unfortunately, 30-40% of all epilepsy patients are resistant to at least two or more anti-seizure medications. Attempts to treat these patients and prevent further seizures necessitates multiple drug trials for the patient. Here we describe the generation and validation of induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) from 3 drug responsive and 3 drug resistant patients, using a non-integrative Sendai virus vector. These lines can be used to generate 2D and 3D patient-specific human cellular models that will enable personalised drug screening and pharmacogenomic studies.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Pharmaceutical Preparations , Cell Differentiation , Cellular Reprogramming , Epilepsy/drug therapy , Humans , Leukocytes, Mononuclear
SELECTION OF CITATIONS
SEARCH DETAIL