Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(21): 2914-2917, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38372145

ABSTRACT

Nickel-based electrocatalysts for water oxidation suffer from low activity and poor stability. In this work, 0.015 mg cm-2 TiO2 nanosheets anchored on Ni foam addressed these problems after electrochemical activation. In situ investigations, including Raman spectra, corroborated the enhanced generation of highly active Ni(III)-O-O species on Ni foam in the presence of trace TiO2.

2.
Materials (Basel) ; 15(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35408009

ABSTRACT

In order to improve the initial color and the long-term heat stability of super-transparent polyvinyl chloride (PVC), a series of composite heat stabilizers consisting of unsaturated Zn oleate and uracil derivatives have been designed in this paper. The uracil derivatives are 1,3-dimethyl-6-amino-uracil (DAU) and 6,6'-diamino-1,1',3,3'-tetramethyl-5,5'-(ethylidene)bisuracil (OSU). The static thermal stability, dynamic thermal stability, and transparency were used to evaluate the properties of the stabilized transparent PVC sheets. The results indicate that the compatibility between the stabilizer and PVC was greatly enhanced by introducing an unsaturated long-chain Zn oleate and a long alkyl chain bisuracil derivative. Through the thermal discoloration test, the best ratio of DAU/zinc oleate (DAU/Zn) and OSU/zinc oleate (OSU/Zn) was determined to be 4:1, with a total amount of 3 phr in 100 phr PVC. It was verified that the combination of zinc oleate with uracil derivatives could improve the long-term thermal stability of PVC, and the DAU/Zn was better than that of the OSU/Zn. In addition, through the transmission/haze verification, adding a proper amount of epoxidized soybean oil (ESBO) and phosphite ester to the OSU/Zn system has a certain synergistic effect. The thermal stability and transparency of PVC can be remarkably enhanced.

3.
RSC Adv ; 10(11): 6121-6128, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35495994

ABSTRACT

Photocatalysts comprising Broussonetia papyrifera biochar and g-C3N4 loaded on sodium alginate were prepared and characterized in terms of reusability and photocatalytic Cr(vi) reduction performance. The observed photocurrent responses as well as photoluminescence and UV-visible diffuse reflectance spectra showed that the best-performing catalyst featured the benefits of efficient photogenerated charge separation, superior electron conductance/transfer, and excellent light adsorption ability, which resulted in a higher photocatalytic Cr(vi) reduction performance compared to that of pure g-C3N4 powder. The prepared composite was shown to be reusable and well separable from the reaction mixture, thus being a promising material for the practical photocatalytic removal of Cr(vi) from wastewater. The trapping experiment and XPS spectra of catalysts after reactions confirm that the decontamination of Cr(vi) lies in the photocatalytic reduction of this species into low-toxicity Cr(iii) by photoinduced electrons generated from g-C3N4, followed by the adsorption of Cr(iii) on biochar or alginate with large specific areas.

4.
Article in English | MEDLINE | ID: mdl-31484371

ABSTRACT

A novel graphite-phase carbon nitride (g-C3N4)/bismuth ferrite (BiFeO3)/carbon nanotubes (CNTs) ternary magnetic composite (CNBT) was prepared by a hydrothermal synthesis. Using this material, Cr(VI) and methylene blue (MB) were removed from wastewater through synergistic adsorption and photocatalysis. The effects of pH, time, and pollutant concentration on the photocatalytic performance of CNBT, as well as possible interactions between Cr(VI) and MB species were analyzed. The obtained results showed that CNTs could effectively reduce the recombination rate of electron-hole pairs during the photocatalytic reaction of the g-C3N4/BiFeO3 composite, thereby improving its photocatalytic performance, while the presence of MB increased the reduction rate of Cr(VI). After 5 h of the simultaneous adsorption and photocatalysis by CNBT, the removal rates of Cr(VI) and MB were 93% and 98%, respectively. This study provides a new theoretical basis and technical guidance for the combined application of photocatalysis and adsorption in the treatment of wastewaters containing mixed pollutants.


Subject(s)
Bismuth/chemistry , Chromium/chemistry , Ferric Compounds/chemistry , Graphite/chemistry , Methylene Blue/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Nitrogen Compounds/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Adsorption , Catalysis , Ferric Compounds/radiation effects , Graphite/radiation effects , Nanocomposites/radiation effects , Nanotubes, Carbon/radiation effects , Nitrogen Compounds/radiation effects , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL