Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 18(10): 2163-2169, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37703191

ABSTRACT

Myxobacteria exhibit a substantial capacity to produce bioactive natural products. The biosynthetic potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) from myxobacteria remains largely underexplored. In our study, we identified a novel lanthipeptide-like biosynthetic pathway, mcy from Myxococcus sp. MCy9171, which was reconstituted in E. coli and in vitro proteolysis. Structural elucidation demonstrated that a series of dehydroamino acids were installed by an orphan McyB dehydratase onto the five McyA core peptides, named myxopeptins. Interestingly, compared with the canonical biosynthetic machinery of class I lanthipeptides, neither Cys residues existed in the diverse core regions, nor any LanC cyclase homologue was encoded in the mcy pathway. Thus, we propose myxopeptins as members of a new subclass of RiPPs, named lanthipeptide-derived linear dehydroamino acid-containing peptides (LDPs), which contain dehydrated amino acids as the class-defining post-translational modifications. Furthermore, sequence similarity network (SSN) analysis revealed the wide distribution of the biosynthetic potential of LDPs in various microbial phyla, implying a co-evolutionary scenario between the precursor peptide and class I lanthipeptide biosynthetic enzymes.


Subject(s)
Myxococcus , Myxococcus/metabolism , Escherichia coli/metabolism , Peptides/chemistry , Protein Processing, Post-Translational
2.
J Am Chem Soc ; 145(30): 16924-16937, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37466996

ABSTRACT

The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.


Subject(s)
Myxococcales , Peptides/chemistry , Protein Processing, Post-Translational
3.
ACS Chem Biol ; 18(5): 1218-1227, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37162177

ABSTRACT

Lanthipeptides are a representative class of RiPPs that possess characteristic lanthionine and/or methyllanthionine thioether cross-links. The biosynthetic potentials of marine-derived lanthipeptides remain largely unexplored. In this study, we characterized three novel lanthipeptides pseudorosin A-C by heterologous expression of a class I lanthipeptide biosynthetic gene cluster from marine Pseudoalteromonas flavipulchra S16. Interestingly, pseudorosin C contains a large loop spanning 18 amino acid residues, which is rare in lanthipeptides. Unexpectedly, the dehydratase PsfB could catalyze the dethiolation of specific Cys residues in all three core peptides, thereby generating dehydroalanines in the absence of LanC cyclase. To the best of our knowledge, we identified the first member of the LanB dehydratase family to perform glutamylation and subsequent elimination on Cys thiol groups, which likely represents a new bypass for class I lanthipeptide biosynthesis. Furthermore, we employed mutagenesis to determine the important motif of the core peptide for dethiolation activity. Moreover, sequence analysis revealed that PsfB exhibited a distinct phylogenetic distance from the characterized LanBs from Gram-positive bacteria. Our findings, therefore, pave the way for further genome mining of lanthipeptides, novel post-translational modification enzymes from marine Gram-negative bacteria, and bioengineering applications.


Subject(s)
Bacteriocins , Pseudoalteromonas , Bacteriocins/metabolism , Phylogeny , Pseudoalteromonas/genetics , Peptides/chemistry , Hydro-Lyases/genetics
4.
ACS Bio Med Chem Au ; 3(1): 1-31, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-37101606

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.

5.
ACS Synth Biol ; 12(4): 971-977, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36988632

ABSTRACT

Engineering the biosynthetic pathways of complex natural products is a significant approach to obtain derivatives with improved properties. Here, we constructed a streamlined engineered biosynthesis system of myxobacterium-derived complex polyketide disorazol in a heterologous host, Burkholderia thailandensis E264. Inactivation of dehydratase domains in the disorazol biosynthetic pathway led to the production of two hydroxylated derivatives. Module deletion allowed the generation of an unnatural derivative with a truncated macrolactone ring, and the ACP-KS linker was the optimal fusion region for module deletion in this trans-AT polyketide synthase. These disorazol derivatives showed different activities against human cancer cell lines ranging from the nanomolar to micromolar level, suggesting the primary structure-activity relationship. The PKS engineering enables structural derivatization of disorazol, facilitating the in-depth engineered biosynthesis of polyketides.


Subject(s)
Polyketides , Humans , Polyketides/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Structure-Activity Relationship
6.
Biomolecules ; 13(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36830663

ABSTRACT

Sugar transporters play an important role in the cellulase production of lignocellulose-degrading fungi. Nevertheless, the role and function of these transporters are still unclear. Here we first report intracellular sugar transporters assisting cellulase production in Trichoderma reesei (T. reesei) using lactose. The mRNA levels of sugar transporter genes mfs, gst, and lac1 were substantially upregulated in T. reesei cultivated on lactose, with the most abundant mRNA levels at 24 h as compared to glucose. Moreover, the individual deletion of these sugar transporters significantly inhibited cellulase production, solid cell growth, and sporulation of T. reesei, suggesting they play a supporting role in cellulase production when grown in lactose. Surprisingly, MFS, GST, and LAC1 were mainly localized in the cytoplasm, with MFS and LAC1 in the endoplasmic reticulum (ER), representing the first discovery of intracellular sugar transporters involved in cellulase biosynthesis in lactose culture. The absence of the gene lac1 noticeably inhibited most of the crucial genes related to cellulase production, including cellulase-encoding genes, transcription factors, and sugar transporters, at 24 h, which was fully relieved at 48 h or 72 h, indicating that lac1 affects cellulase production more at the early step. This research advances the understanding of the function of intracellular sugar transporters in fungi, particularly for fungal cellulase production.


Subject(s)
Cellulase , Trichoderma , Lactose , Fungal Proteins/genetics
7.
Front Microbiol ; 13: 1073243, 2022.
Article in English | MEDLINE | ID: mdl-36466684

ABSTRACT

Heterologous expression is an indispensable approach to exploiting natural products from phylogenetically diverse microbial communities. In this study, we constructed a heterologous expression system based on strain Burkholderia thailandensis E264 by deleting efflux pump genes and screening constitutive strong promoters. The biosynthetic gene cluster (BGC) of disorazol from Sorangium cellulosum So ce12 was expressed successfully with this host, and the yield of its product, disorazol F2, rather than A1, was improved to 38.3 mg/L by promoter substitution and insertion. In addition to the disorazol gene cluster, the BGC of rhizoxin from Burkholderia rhizoxinica was also expressed efficiently, whereas no specific peak was detected when shuangdaolide BGC from Streptomyces sp. B59 was transformed into the host. This system provides another option to explore natural products from different phylogenetic taxa.

8.
ACS Chem Biol ; 17(12): 3489-3498, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36373602

ABSTRACT

Microviridins are a class of ribosomally synthesized and post-translationally modified peptides originally discovered from cyanobacteria, featured by intramolecular ω-ester and ω-amide bonds catalyzed by two ATP-grasp ligases. In this study, 104 biosynthetic gene clusters of microviridins from Bacteroidetes were bioinformatically analyzed, which unveiled unique features of precursor peptides. The analysis of core peptides revealed a microviridin-like biosynthetic gene cluster from Chitinophagia japonensis DSM13484 consisting of two potential precursors ChiA1 and ChiA2. Unexpectedly, the core peptide sequence of ChiA1 is consistent with the backbone of the elastase-inhibiting peptide FR901451, while ChiA2 is likely to be a precursor of an unknown product. However, an unusual C-terminal follower cleavage compared to the previously known microviridin pathways was observed and found to be dispensable for other modifications. To confirm the biosynthetic origin of FR901451, ATP-grasp ligases ChiC and ChiB were biochemically characterized to be responsible for the intramolecular ester and amide bond formation, respectively. In vitro reconstitution of the pathway showed the three-fold dehydrations of ChiA1 while unusual four-fold dehydrations were observed for ChiA2. Furthermore, in vivo gene coexpression facilitated the production of chitinoviridin A1 (FR901451) and two novel microviridin-class compounds chitinoviridin A2A and chitinoviridin A2B, with an extra macrolactone ring. All of these peptides showed potent inhibitory effects against elastase and chymotrypsin independently.


Subject(s)
Ligases , Multigene Family , Ligases/metabolism , Pancreatic Elastase , Esters , Amides , Adenosine Triphosphate/metabolism , Protein Processing, Post-Translational
9.
ACS Infect Dis ; 8(12): 2529-2539, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36354217

ABSTRACT

Identified from the pathogen Bacillus cereus SJ1, the two-component lantibiotic bicereucin is featured by the presence of a series of nonproteogenic amino acids and exhibits potent synergistic activity against a broad spectrum of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, as well as hemolytic activity against mammalian cells. In this study, we performed site-directed mutagenesis on the nonproteogenic amino acids as well as truncation of dehydrobutyrine-rich N-terminal residues and evaluated the effects on both biological activities. We identified that D-Ala21 and D-Ala26 of Bsjα and D-Ala23 and D-Ala28 of Bsjß play an essential role in the antimicrobial activity, while the N-termini of both peptides are important for both activities. We also determined that the integrity of both subunits is essential for hemolytic activity. Finally, we obtained two variants BsjαtS17A+Bsjß and BsjαS30A+BsjßT19A, which retained the antimicrobial activity and exhibited greatly decreased hemolytic toxicity. Overall, our results provide a comprehensive understanding of the structure-activity relationships of bicereucin and insights into the mechanism of action thereof, facilitating the further exploration of the molecular basis of the binding receptor of bicereucin and genome mining of potential novel two-component lantibiotics.


Subject(s)
Anti-Infective Agents , Bacteriocins , Methicillin-Resistant Staphylococcus aureus , Bacteriocins/genetics , Bacteriocins/pharmacology
10.
ACS Chem Biol ; 17(4): 785-790, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35293716

ABSTRACT

Microbial natural products provide a large number of drug leads. It is believed that abundant unexploited marine microorganisms also exhibit great potential for discovering compounds with novel chemical scaffolds and bioactivities. Lanthipeptides are a group of ribosomally synthesized and post-translationally modified peptides exhibiting a variety of biological functionalities. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and methyllanthionine. However, marine-derived lanthipeptides remain underexplored. Here we identified, heterologously expressed, and structurally characterized the unprecedented class II lanthipeptide marinsedin from the rare marine bacterium Marinicella sediminis F2T. Marinsedin consists of 19 amino acids and contains a rare 2-oxobutyryl group blocking the N-terminus of the peptide chain and two overlapping intramolecular thioether rings including an unusual 12-membered macro-thioether ring. Furthermore, we also evaluated the biological activity of marinsedin, demonstrating that it exhibits moderate cytotoxicity against HeLa cells and weak cytotoxicity against HCT-116 cell lines.


Subject(s)
Bacteriocins , Peptides , Amino Acids , Bacteria/metabolism , Bacteriocins/chemistry , Gammaproteobacteria , HeLa Cells , Humans , Peptides/chemistry , Sulfides/chemistry , Sulfides/pharmacology
11.
Org Lett ; 22(3): 939-943, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31994894

ABSTRACT

Genome mining of Fulvivirga sp. W222 revealed a desferrioxamine-like biosynthetic gene cluster containing an unknown gene fulF that is conserved in many Bacteroidetes species. A series of primary amine-acylated desferrioxamine G1 analogues, fulvivirgamides, were identified, and fulvivirgamides A2, B2, B3, and B4 (1-4) were purified and characterized. The function of FulF, which is a novel acyltransferase for the acylation of the primary amine of Desferrioxamine G1, was verified by heterologous expression and feeding experiments.


Subject(s)
Bacteroidetes/metabolism , Deferoxamine/metabolism , Acylation , Bacteroidetes/chemistry , Bacteroidetes/genetics , Deferoxamine/chemistry , Deferoxamine/isolation & purification , Genome, Bacterial/genetics , Molecular Structure , Stereoisomerism
12.
Chembiochem ; 21(1-2): 190-199, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31532570

ABSTRACT

As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahSB are biochemically characterized in this study. We also present the crystal structure of LahSB in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.


Subject(s)
Biological Products/metabolism , Clostridiales/metabolism , Hydro-Lyases/metabolism , Methyltransferases/metabolism , Peptides/metabolism , Ribosomes/metabolism , Clostridiales/genetics , Protein Processing, Post-Translational
13.
Crit Rev Microbiol ; 45(2): 162-181, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31218924

ABSTRACT

Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the ß-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiales/metabolism , Polyketide Synthases/metabolism , Polyketides/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways , Burkholderiales/genetics , Polyketide Synthases/genetics
14.
Elife ; 82019 01 14.
Article in English | MEDLINE | ID: mdl-30638446

ABSTRACT

The secretion of peptides and proteins is essential for survival and ecological adaptation of bacteria. Dual-functional ATP-binding cassette transporters export antimicrobial or quorum signaling peptides in Gram-positive bacteria. Their substrates contain a leader sequence that is excised by an N-terminal peptidase C39 domain at a double Gly motif. We characterized the protease domain (LahT150) of a transporter from a lanthipeptide biosynthetic operon in Lachnospiraceae and demonstrate that this protease can remove the leader peptide from a diverse set of peptides. The 2.0 Å resolution crystal structure of the protease domain in complex with a covalently bound leader peptide demonstrates the basis for substrate recognition across the entire class of such transporters. The structural data also provide a model for understanding the role of leader peptide recognition in the translocation cycle, and the function of degenerate, non-functional C39-like domains (CLD) in substrate recruitment in toxin exporters in Gram-negative bacteria.


Subject(s)
Bacterial Proteins/metabolism , Clostridiales/metabolism , Glycine/metabolism , Membrane Transport Proteins/metabolism , Metalloendopeptidases/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biological Transport , Clostridiales/genetics , Crystallography, X-Ray , Glycine/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Models, Molecular , Protein Conformation , Sequence Homology, Amino Acid
15.
Nat Prod Rep ; 36(10): 1412-1436, 2019 10 16.
Article in English | MEDLINE | ID: mdl-30620035

ABSTRACT

Covering: 2013 to June 2018 Heterologous expression of natural product biosynthetic pathways is of increasing interest in microbial biotechnology, drug discovery and optimization. It empowers not only the robust production of valuable biomolecules in more amenable heterologous hosts but also permits the generation of novel analogs through biosynthetic engineering. This strategy also facilitates the discovery of novel bioactive compounds following the functional expression of cryptic biosynthetic gene clusters (BGCs) from fastidious original producers or metagenomic DNA in surrogate hosts, thus facilitating genome mining in the post-genomic era. This review discusses recent advances and trends pertaining to the heterologous production of bacterial natural products, with an emphasis on new techniques, heterologous hosts, and novel chemistry since 2013.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Biological Products/metabolism , Genetic Engineering/methods , Bacteriological Techniques , Biosynthetic Pathways/genetics , Cloning, Molecular , Metagenome , Multigene Family
16.
Proc Natl Acad Sci U S A ; 115(18): E4255-E4263, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666226

ABSTRACT

Bacterial genomes encode numerous cryptic biosynthetic gene clusters (BGCs) that represent a largely untapped source of drugs or pesticides. Mining of the cryptic products is limited by the unavailability of streamlined genetic tools in native producers. Precise genome engineering using bacteriophage recombinases is particularly useful for genome mining. However, recombinases are usually host-specific. The genome-guided discovery of novel recombinases and their transient expression could boost cryptic BGC mining. Herein, we reported a genetic system employing Red recombinases from Burkholderiales strain DSM 7029 for efficient genome engineering in several Burkholderiales species that currently lack effective genetic tools. Using specialized recombinases-assisted in situ insertion of functional promoters, we successfully mined five cryptic nonribosomal peptide synthetase/polyketide synthase BGCs, two of which were silent. Two classes of lipopeptides, glidopeptins and rhizomides, were identified through extensive spectroscopic characterization. This recombinase expression strategy offers utility within other bacteria species, allowing bioprospecting for potentially scalable discovery of novel metabolites with attractive bioactivities.


Subject(s)
Bacteriophages/enzymology , Burkholderia/genetics , Genome, Bacterial , Multigene Family , Recombinases/chemistry , Viral Proteins/chemistry
17.
Metab Eng ; 44: 213-222, 2017 11.
Article in English | MEDLINE | ID: mdl-28951265

ABSTRACT

Coronatine (COR) represents a phytotoxin produced by several pathovars of Pseudomonas syringae. It mediates multiple virulence activities by mimicking the plant stress hormone jasmonoyl-l-isoleucine. Structurally, COR consists of a bicyclic polyketide moiety, coronafacic acid (CFA), which is linked via an amide bond to an unusual ethylcyclopropyl amino acid moiety, coronamic acid (CMA). In our studies, we aimed at establishing and engineering of heterologous COR and CFA production platforms using P. putida KT2440 as host. Based on genetic information of the native producer P. syringae pv. tomato DC3000 a COR biosynthetic gene cluster was designed and reconstituted from synthetic DNA fragments. The applied constructional design facilitated versatile pathway modifications and the generation of various expression constructs, which were evaluated for the production of CFA, COR and its derivatives. By modifications of the gene cluster composition production profiles were directed towards target compounds and valuable information about the function and impact of selected pathway proteins on COR biosynthesis were obtained. Additional engineering of expression vector features, including the use of the constitutive PrpsH promoter and a p15Aori-based transposon backbone, led to the development of an expression strain with promising CFA production yields of > 90mg/l.


Subject(s)
Amino Acids , Indenes , Metabolic Engineering , Pseudomonas putida , Pseudomonas syringae/genetics , Synthetic Biology , Amino Acids/biosynthesis , Amino Acids/genetics , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Pseudomonas syringae/metabolism
18.
Appl Environ Microbiol ; 83(3)2017 02 01.
Article in English | MEDLINE | ID: mdl-27864176

ABSTRACT

Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that are characterized by the thioether cross-linked bisamino acids lanthionine (Lan) and methyllanthionine (MeLan). Duramycin contains 19 amino acids, including one Lan and two MeLans, an unusual lysinoalanine (Lal) bridge formed from the ε-amino group of lysine 19 and a serine residue at position 6, and an erythro-3-hydroxy-l-aspartic acid at position 15. These modifications are important for the interactions of duramycin with its biological target, phosphatidylethanolamine (PE). Based on the binding affinity and specificity for PE, duramycin has been investigated as a potential therapeutic, as a molecular probe to investigate the role and localization of PE in biological systems, and to block viral entry into mammalian cells. In this study, we identified the duramycin biosynthetic gene cluster by genome sequencing of Streptomyces cinnamoneus ATCC 12686 and investigated the dur biosynthetic machinery by heterologous expression in Escherichia coli In addition, the analog duramycin C, containing six amino acid changes compared to duramycin, was successfully generated in E. coli The substrate recognition motif of DurX, an α-ketoglutarate/iron(II)-dependent hydroxylase that carries out the hydroxylation of aspartate 15 of the precursor peptide DurA, was also investigated using mutagenesis of the DurA peptide. Both in vivo and in vitro results demonstrated that Gly16 is important for DurX activity. IMPORTANCE: Duramycin is a natural product produced by certain bacteria that binds to phosphatidylethanolamine (PE). Because PE is involved in many cellular processes, duramycin is an antibiotic that kills bacteria, but it has also been used as a molecular probe to detect PE and monitor its localization in mammalian cells and even whole organisms, and it was recently shown to display broad-spectrum inhibition of viral entry into host cells. In addition, the molecule has been evaluated as treatment for cystic fibrosis. We report here the genes that are involved in duramycin biosynthesis, and we produced duramycin by expressing those genes in Escherichia coli We show that duramycin analogs can also be produced. The ability to access duramycin and analogs by production in E. coli opens opportunities to improve duramycin as an antibiotic, PE probe, antiviral, or cystic fibrosis therapeutic.


Subject(s)
Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Peptides/genetics , Streptomyces/genetics , Bacterial Proteins/metabolism , Bacteriocins/biosynthesis , Escherichia coli/metabolism , Organisms, Genetically Modified/metabolism , Peptides/metabolism , Streptomyces/metabolism
19.
Org Lett ; 18(23): 6188-6191, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27934350

ABSTRACT

Cytolysin, a two-component lanthipeptide comprising cytolysin S (CylLS″) and cytolysin L (CylLL″), is the only family member to exhibit lytic activity against mammalian cells in addition to synergistic antimicrobial activity. A subset of the thioether cross-links of CylLS″ and CylLL″ have ll stereochemistry instead of the canonical dl stereochemistry in all previously characterized lanthipeptides. The synthesis of a CylLS″ variant with dl stereochemistry is reported. Its antimicrobial activity was found to be decreased, but not its lytic activity against red blood cells. Hence, the unusual ll stereochemistry is not responsible for the lytic activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lactococcus lactis/drug effects , Perforin/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Lactococcus lactis/pathogenicity , Microbial Sensitivity Tests , Molecular Conformation , Perforin/chemical synthesis , Perforin/chemistry , Stereoisomerism , Structure-Activity Relationship , Virulence/drug effects
20.
Chembiochem ; 17(23): 2286-2292, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27653442

ABSTRACT

The bottromycins are a family of highly modified peptide natural products, which display potent antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Bottromycins have recently been shown to be ribosomally synthesized and post-translationally modified peptides (RiPPs). Unique amongst RiPPs, the precursor peptide BotA contains a C-terminal "follower" sequence, rather than the canonical N-terminal "leader" sequence. We report herein the structural and biochemical characterization of BotP, a leucyl-aminopeptidase-like enzyme from the bottromycin pathway. We demonstrate that BotP is responsible for the removal of the N-terminal methionine from the precursor peptide. Determining the crystal structures of both apo BotP and BotP in complex with Mn2+ allowed us to model a BotP/substrate complex and to rationalize substrate recognition. Our data represent the first step towards targeted compound modification to unlock the full antibiotic potential of bottro- mycin.


Subject(s)
Leucyl Aminopeptidase/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...