Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732886

ABSTRACT

In this paper, a temperature measurement system with NTC (Negative Temperature Coefficient) thermistors was designed. An MCU (Micro Control Unit) primarily operates by converting the voltage value collected by an ADC (Analog-to-Digital Converter) into the resistance value. The temperature value is then calculated, and a DAC (Digital-to-Analog Converter) outputs a current of 4 to 20 mA that is linearly related to the temperature value. The nonlinear characteristics of NTC thermistors pose a challenging problem. The nonlinear characteristics of NTC thermistors were to a great extent solved by using a resistance ratio model. The high precision of the NTC thermistor is obtained by fitting it with the Hoge equation. The results of actual measurements suggest that each module works properly, and the temperature measurement accuracy of 0.067 °C in the range from -40 °C to 120 °C has been achieved. The uncertainty of the output current is analyzed and calculated with the uncertainty of 0.0014 mA. This type of system has broad potential applications in industry fields such as the petrochemical industry.

2.
Phys Rev Lett ; 132(1): 014002, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38242657

ABSTRACT

Multicomponent droplets are pertinent to diverse applications ranging from 3D printing to fabrication of electronic devices to medical diagnostics and are typically inherent with the occurrence of the phase transition in the manifestation of evaporation and solidification. Indeed, the versatile transformations and fascinating morphologies of the droplets have been identified, which primarily arise from the evaporation-induced flow. Here, we report the self-lifting behavior of a frozen binary droplet, resulting in a nearly doubling in height, in a fashion that defies against the gravitational effect. This counterintuitive observation is attributed to an internal solutal Marangoni flow up to 1 mm/s, which is driven by the enriched solute concentration locally in the vicinity of the solidification front. Moreover, we perform theoretical analysis by incorporating the propagation of solidification front, and the calculated spatiotemporal evolution of droplet shape agrees with experiments excellently. The effects of several key physical parameters on self-lifting are elucidated quantitatively, providing guidance to control the self-lifting. These results will further advance our understanding of underlying physicochemical hydrodynamics in the multicomponent liquid systems subjected to heat transfer and phase change, consequently shedding light on the relevant technological applications.

3.
Talanta ; 269: 125535, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38091739

ABSTRACT

Numerous aptamers against various targets have been identified through the technology of systematic evolution of ligands by exponential enrichment (SELEX), but the affinity of these aptamers are often insufficient due to the limitations of SELEX. Therefore, a more rational in silico screening strategy (ISS) was developed for efficient screening of high affinity aptamers, which took shape complementarity and thermodynamic stability into consideration. Neuron specific enolase (NSE), a tumor marker, was selected as the target molecule. In the screening process, three aptamer candidates with good shape complementarity, lower ΔG values, and higher ZDOCK scores were produced. The dissociation constant (Kd) of these candidates to NSE was determined to be 10.13 nM, 14.82 nM, and 2.76 nM, respectively. Each of them exhibited higher affinity to NSE than the parent aptamer (Kd = 23.83 nM). Finally, an antibody-free fluorescence aptasensor assay, based on the aptamer with the highest affinity, P-5C8G, was conducted, resulting in a limit of detection (LOD) value of 1.8 nM, which was much lower than the parental aptamer (P, LOD = 12.6 nM). The proposed ISS approach provided an efficient and universal strategy to improve the aptamer to have a high affinity and good analytical utility.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique/methods , Limit of Detection , Biomarkers, Tumor
4.
Clin Microbiol Infect ; 30(1): 137-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802303

ABSTRACT

OBJECTIVES: BF.7 (BA.5.2.1.7) is a novel sublineage of Omicron BA.5, whose clinical characteristics are not yet established. METHODS: From 28 September 2022 to 3 October 2022, the first 421 patients with BF.7 were assessed in Hohhot China and the clinical data were extracted and analysed. The basic reproduction number (R0) was estimated using a statistical model calculation method. RESULTS: The R0 value was determined to be 13.79 (95% confidence interval: 12.44-15.24). The mean age was 33.43 ± 18.78 years. Asymptomatic, mild, moderate, severe, and critical patients accounted for 12.35% (52/421), 82.42% (347/421), 4.75% (20/421), 0.24% (1/421), and 0.24% (1/421) proportion, respectively. The main clinical symptoms were fever accounting for 41.09% (173/421), cough accounting for 41.09% (173/421), and throat dryness and soreness accounting for 30.88% (130/421). In the 3-dose vaccination subgroup, 31.22% (64) cases had a fever, which were significantly lower than 51.37% (96) cases of the 2-dose vaccination subgroup (p 0.000). The rates of abnormally increased C-reactive protein level in the 2-dose and 3-dose vaccination subgroups were 10.16% (19/187) and 4.88% (10/205), significantly lower than 66.67% (10/15) of the 1-dose vaccination subgroup (1-dose vs. 2-dose: p 0.000, 1-dose vs. 3-dose: p 0.000). Notably, the population with complete 3 doses of vaccination did not exhibit any severe or critical status. DISCUSSION: BF.7 exhibited a higher transmission than previously emerged SARS-CoV-2. The vaccine against COVID-19 was found to relieve fever, nausea, and vomiting as well as reduce the abnormal ratio of lymphocytes, eosinophils, neutrophils, and the C-reactive protein level.


Subject(s)
C-Reactive Protein , COVID-19 , Humans , Adolescent , Young Adult , Adult , Middle Aged , COVID-19 Vaccines , Basic Reproduction Number , China/epidemiology , Fever
5.
Mol Oral Microbiol ; 38(4): 309-320, 2023 08.
Article in English | MEDLINE | ID: mdl-37216657

ABSTRACT

INTRODUCTION: MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions. METHODS: Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays. RESULTS: The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p-/- mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p-/- mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo. CONCLUSIONS: miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.


Subject(s)
Bone Resorption , MicroRNAs , Periodontitis , Mice , Animals , Tensins/genetics , X-Ray Microtomography , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Cytokines/genetics , Periodontitis/genetics , Chromosomes/metabolism , Bone Resorption/genetics
6.
Plant Sci ; 328: 111582, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632889

ABSTRACT

The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.


Subject(s)
Arabidopsis , Verticillium , Verticillium/physiology , Hydrogen Peroxide/metabolism , Plant Diseases/microbiology , Plant Immunity , Gossypium/genetics , Gossypium/metabolism , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Arabidopsis/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Syst Biol Reprod Med ; 69(2): 153-165, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36268996

ABSTRACT

Polycystic ovary syndrome (PCOS) is a disease characterized by metabolic disorders. This study aimed to examine the effects of resveratrol treatment on ovulation in the PCOS rat model. Quantitative real-time PCR and immunohistochemistry were used to determine the mRNA and protein expression levels. TNUEL assay was used to evaluate cell apoptosis in ovary. The metabolites were evaluated by liquid chromatography with tandem mass spectrometry. Resveratrol alleviated disrupted estrous cycle and improved granular cell layers, and reversed the decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats. Resveratrol restored the changes in the mRNA expression levels in the rate-limiting genes of glycolysis in the PCOS ovary. The expression of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2), and sirtuin 1 (SIRT1) was significantly downregulated in ovarian tissues of the PCOS rats; while the resveratrol treatment significantly increased the expression of LDH-A, PKM2, and SIRT1 in the ovarian tissues of PCOS rats. Collectively, the protective effects of resveratrol in the PCOS rats may be associated with the regulation of glycolysis-related mediators including PKM2, LDH-A, and SIRT1. Resveratrol may represent a good candidate in alleviating the development of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Rats , Granulosa Cells/metabolism , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/pharmacology , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Resveratrol/pharmacology , RNA, Messenger/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology
8.
J Environ Sci (China) ; 124: 835-845, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182187

ABSTRACT

Ambient particulate matter (PM) can cause adverse health effects via their ability to produce Reactive Oxygen Species (ROS). Water-Soluble Organic Compounds (WSOCs), a complex mixture of organic compounds which usually coexist with Transition Metals (TMs) in PM, have been found to contribute to ROS formation. However, the interaction between WSOCs and TMs and its effect on ROS generation are still unknown. In this study, we examined the ROS concentrations of V, Zn, Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA) and the mixtures of V/Zn and SRFA/SRHA by using a cell-free 2',7'-Dichlorodihydrofluorescein (DCFH) assay. The results showed that V or Zn synergistically promoted ROS generated by SRFA, but had an antagonistic effect on ROS generated by SRHA. Fluorescence quenching experiments indicated that V and Zn were more prone to form stable complexes with aromatic humic acid-like component (C1) and fulvic acid-like component (C3) in SRFA and SRHA. Results suggested that the underlying mechanism involving the fulvic acid-like component in SRFA more tending to complex with TMs to facilitate ROS generation through π electron transfer. Our work showed that the complexing ability and complexing stability of atmospheric PM organics with metals could significantly affect ROS generation. It is recommended that the research deploying multiple analytical methods to quantify the impact of PM components on public health and environment is needed in the future.


Subject(s)
Humic Substances , Water , Humic Substances/analysis , Organic Chemicals , Particulate Matter/chemistry , Reactive Oxygen Species/chemistry
9.
Front Endocrinol (Lausanne) ; 13: 1024320, 2022.
Article in English | MEDLINE | ID: mdl-36277727

ABSTRACT

Polycystic ovary syndrome (PCOS) is a lifelong reproductive, metabolic, and psychiatric disorder that affects 5-18% of women, which is associated with a significantly increased lifetime risk of concomitant diseases, including type 2 diabetes, psychiatric disorders, and gynecological cancers. Posttranslational modifications (PTMs) play an important role in changes in protein function and are necessary to maintain cellular viability and biological processes, thus their maladjustment can lead to disease. Growing evidence suggests the association between PCOS and posttranslational modifications. This article mainly reviews the research status of phosphorylation, methylation, acetylation, and ubiquitination, as well as their roles and molecular mechanisms in the development of PCOS. In addition, we briefly summarize research and clinical trials of PCOS therapy to advance our understanding of agents that can be used to target phosphorylated, methylated, acetylated, and ubiquitinated PTM types. It provides not only ideas for future research on the mechanism of PCOS but also ideas for PCOS treatments with therapeutic potential.


Subject(s)
Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/complications , Diabetes Mellitus, Type 2/complications , Protein Processing, Post-Translational , Acetylation , Proteins/metabolism
10.
Nat Commun ; 13(1): 5749, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36180429

ABSTRACT

Precise manipulation of droplets or bubbles hosts a broad range of applications for microfluidic devices, drug delivery, and soft robotics. Generally the existing approaches via passively designing structured surfaces or actively applying external stimuli, inherently confine their motions within the planar or curved geometry at a slow speed. Consequently the realization of 3D manipulation, such as of the underwater bubbles, remains challenging. Here, during the near-infrared-laser impacting on water, by simply introducing a thermally conductive interface, we unexpectedly observe a spontaneously bouncing bubble with hundreds-of-micrometer diameter at tens-of-Hertz frequency. The unique formation of temperature inversion layer in our system generates the depth-dependent thermal Marangoni force responsible for the bouncing behavior. Both the scaling analysis and numerical simulation agree with observations quantitatively. Furthermore, by controlling the navigation speed of the laser beam, the bubble not only shows excellent steerability with velocity up to 40 mm/s, but also exhibits distinctive behaviors from bouncing to dancing within water. We demonstrate the potential applications by steering the bubble within water to specifically interact with tiny objects, shedding light on the fabrication of bubble-based compositions in materials science and contamination removal in water treatment.

12.
Autoimmunity ; 55(6): 351-359, 2022 09.
Article in English | MEDLINE | ID: mdl-35766145

ABSTRACT

BACKGROUND: Regulatory B cells (Bregs) are a subset of B cells that secrete interleukin 10 (IL-10) and play a vital role in suppressing the immune response. The aim of this study was to evaluate the proportion of Bregs in patients with thymoma. METHODS: The proportions of subgroups of Bregs in 23 patients with thymoma and 15 healthy controls were detected by flow cytometry. The serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels of the subjects were measured using a cytometric bead array (CBA). RESULTS: The proportions of circulating IL-10+ B cells, IL-10+CD24hiCD38hi Bregs, and IL-10+CD24hiCD27+ Bregs and the serum IL-10 level were significantly higher in patients with thymoma than in the control group and were negatively correlated with the Karnofsky Performance Scale (KPS) score. The serum levels of cytokines IL-2, IL-6, IFN-γ, and TNF-α were higher and serum IL-17A level was lower in patients with thymoma. Patients with advanced-stage thymoma exhibited significantly higher proportions of IL-10-producing Bregs and a higher serum IL-10 level. After tumour resection, the frequency of circulating IL-10+CD24hiCD38hi Bregs and the serum IL-10 level were significantly decreased in patients with thymoma. The serum IL-10 levels exhibited the best accuracy in assessing the risk of thymoma occurrence in this study. CONCLUSIONS: The expression of IL-10 produced by Bregs is increased in patients with thymoma, particularly those with advanced-stage disease, which may suggest that Bregs are involved in the pathogenesis and progression of thymoma.


Subject(s)
B-Lymphocytes, Regulatory , Thymoma , Thymus Neoplasms , B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes, Regulatory/pathology , Humans , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-2/metabolism , Interleukin-6/metabolism , Thymoma/metabolism , Thymoma/pathology , Thymus Neoplasms/diagnosis , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism
13.
Cell Commun Signal ; 20(1): 61, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534864

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. METHODS AND RESULTS: In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. CONCLUSIONS: In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , Cell Proliferation , Female , Follicular Fluid/metabolism , Glycolysis , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Lactates/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology
14.
Mol Reprod Dev ; 89(4): 202-213, 2022 04.
Article in English | MEDLINE | ID: mdl-35307908

ABSTRACT

Dendrobium nobile Lindl polysaccharides (DNLP) exhibited various biological functions. This study aimed to investigate the protective effects of DNLP on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic rats in comparison with metformin. The blood glucose level was significantly increased and the homeostatic model assessment for insulin resistance (HOMA-IR) aggravated markedly in diabetic rats. The weight of testis and epididymis, and the sperm number and motility were decreased in the diabetic rats. The pathologic changes occurred in the spermatogenic tubules along with the decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) and Sirtuin 1 (SIRT1) expression and increased cell apoptosis in the testes. Compared with the model group, DNLP and metformin treatment significantly decreased the level of blood glucose, improved the HOMA-IR, and increased the weight of testis and epididymis, as well as the sperm number and sperm motility. Furthermore, the pathologic changes in the spermatogenic tubules improved significantly with increased number of spermatogenic cells, the upregulation of PCNA and SIRT1 and suppression of cell apoptosis in the testes. Collectively, our study for the first time examined the effects of DNLP on the male reproductive system of STZ-induced diabetic rats, and indicated that DNLP was protective against diabetes mellitus-induced testis injury via increasing the proliferation, inhibiting cell apoptosis and upregulating SIRT1 expression in testicular spermatogenic cells.


Subject(s)
Dendrobium , Diabetes Mellitus, Experimental , Metformin , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Male , Metformin/pharmacology , Metformin/therapeutic use , Polysaccharides/metabolism , Polysaccharides/pharmacology , Proliferating Cell Nuclear Antigen , Rats , Sirtuin 1/metabolism , Sperm Motility , Streptozocin/adverse effects , Streptozocin/metabolism , Testis/metabolism
15.
Food Funct ; 13(6): 3318-3328, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35257124

ABSTRACT

Bile salt hydrolases (BSHs), a group of cysteine-hydrolases produced by gut microbes, play a crucial role in the hydrolysis of glycine- or taurine-conjugated bile acids and have been validated as key targets to modulate bile acid metabolism. This study aims to discover one or more efficacious inhibitors against a BSH produced by Lactobacillus salivarius (lsBSH) from natural products and to characterize the mechanism of the newly identified BSH inhibitor(s). Following screening of the inhibition potentials of more than 100 natural compounds against lsBSH, amentoflavone (AMF), a naturally occurring biflavone isolated from various medicinal plants, was discovered to be an efficacious BSH inhibitor (IC50 = 0.34 µM). Further investigation showed that AMF could strongly inhibit the lsBSH-catalyzed hydrolytic reaction in living gut microbes. Inhibition kinetic analyses demonstrated that AMF reversibly inhibited the lsBSH-catalyzed hydrolytic reaction in a mixed-inhibition manner, with an apparent Ki value of 0.65 µM. Fluorescence quenching assays suggested that AMF could quench the fluorescence of lsBSH via a static quenching procedure. Docking simulations suggested that AMF could be fitted into lsBSH at two distinct ligand-binding sites, mainly via hydrophobic interactions and hydrogen bonding, which explained well the mixed inhibition mode of this agent. Animal tests showed that the hydrolytic activities of BSHs in mice feces could be significantly blocked by AMF. In summary, this study reports that AMF is a strong, naturally occurring inhibitor of lsBSH, which offers a promising lead compound to develop novel agents for modulating bile acid metabolism in the host via targeting BSHs.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Biflavonoids/pharmacology , Enzyme Inhibitors/pharmacology , Ligilactobacillus salivarius/enzymology , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Animals , Biflavonoids/chemistry , Biflavonoids/metabolism , Catalytic Domain , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Feces/enzymology , Kinetics , Mice , Molecular Docking Simulation
16.
Small ; 18(18): e2108037, 2022 May.
Article in English | MEDLINE | ID: mdl-35257493

ABSTRACT

The electrochemical system is playing an increasingly important role in the advanced technology development for drinkable water and energy storage. While the binary electrolyte has been widely studied, such as the associated intriguing interfacial instabilities, multi-component electrolyte is by far less known. Here, based on the classic Cu|CuSO4 |Cu electrochemical system, the effect of supporting electrolyte is systematically investigated by highlighting the inert cations. In an annulus microfluidic device, the suppression of a previously known electro-osmotic instability and the emergence of an array of the remote electroconvection along the azimuthal direction is found. A distinctive inert-cation concentration valley propagates radially outward at a speed limited by the electromigration velocity. Remarkably, the simultaneous visualization of spatiotemporal evolution demonstrates the correlation of the concentration valley and electroconvection at a microscopic level. The underlying physical mechanism of their correlation is discussed, and the scaling analysis agrees with experiments. This work might inspire more future work on the multi-component electrolyte, such as for the suppression of interfacial hydrodynamic instability and mitigation of dendrite growth, with the technological implications for water treatment and energy storage in batteries.

17.
Article in English | MEDLINE | ID: mdl-34948547

ABSTRACT

Exergames are now often implemented among older adults for health purposes. This study aimed to investigate whether playing Kinect and Wii exergames has effects on older adults' physical fitness and psychological perceptions towards exergames. A total of 23 older participants aged above 60 years were recruited and randomly assigned into two groups, in which they played either Kinect or Wii Bowling exergames for three sessions in one week. Physiological and psychological measures were collected including heart rate, blood pressure, shoulder flexibility, as well as perceived benefits and intentions for future use. Findings indicated that exergames are equivalent to light-intensity exercises, and hence pose no or minimal risk to older adults. Older adults had a positive attitude towards exergames and have a strong willingness to engage in exergaming on a regular basis. Although no significant platform difference was identified, observation and qualitative findings suggested that Wii might provide a more intense physical activity than Kinect, while Kinect might obtain a higher perception among older adults than Wii. The study has several practical implications for both health professionals and exergame designers targeting the ageing population.


Subject(s)
Exergaming , Video Games , Aged , Humans , Middle Aged , Perception , Physical Fitness , Pilot Projects
18.
Anal Chim Acta ; 1153: 338305, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33714444

ABSTRACT

Human UDP-glucuronosyltransferase enzymes (hUGTs), one of the most important classes of conjugative enzymes, are responsible for the glucuronidation and detoxification of a variety of endogenous substances and xenobiotics. Inhibition of hUGTs may cause undesirable effects or adverse drug-drug interactions (DDI) via modulating the glucuronidation rates of endogenous toxins or the drugs that are primarily conjugated by the inhibited hUGTs. Herein, to screen hUGTs inhibitors in a more efficient way, a novel fluorescence-based microplate assay has been developed by utilizing a fluorogenic substrate. Following screening of series of 4-hydroxy-1,8-naphthalimide derivatives, we found that 4-HN-335 is a particularly good substrate for a panel of hUGTs. Under physiological conditions, 4-HN-335 can be readily O-glucuronidated by ten hUGTs, such reactions generate a single O-glucuronide with a high quantum yield (Ф = 0.79) and bring remarkable changes in fluorescence emission. Subsequently, a fluorescence-based microplate assay is developed to simultaneously measure the inhibitory effects of selected compound(s) on ten hUGTs. The newly developed fluorescence-based microplate assay is time- and cost-saving, easy to manage and can be adapted for 96-well microplate format with the Z-factor of 0.92. We further demonstrate the utility of the fluorescence-based assay for high-throughput screening of two compound libraries, resulting in the identification of several potent UGT inhibitors, including natural products and FDA-approved drugs. Collectively, this study reports a novel fluorescence-based microplate assay for simultaneously sensing the residual activities of ten hUGTs, which strongly facilitates the identification and characterization of UGT inhibitors from drugs or herbal constituents and the investigations on UGT-mediated DDI.


Subject(s)
Enzyme Inhibitors , High-Throughput Screening Assays , Drug Interactions , Enzyme Inhibitors/pharmacology , Glucuronides , Glucuronosyltransferase , Humans , Microsomes, Liver
19.
Eur J Med Chem ; 209: 112856, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33007602

ABSTRACT

Human carboxylesterase 2 (hCES2A), one of the major serine hydrolases distributed in the small intestine, plays a crucial role in hydrolysis of ester-bearing drugs. Accumulating evidence has indicated that hCES2A inhibitor therapy can modulate the pharmacokinetic and toxicological profiles of some important hCES2A-substrate drugs, such as the anticancer agent CPT-11. Herein, a series of indanone-chalcone hybrids are designed and synthesized to find potent and highly selective hCES2A inhibitors. Inhibition assays demonstrated that most indanone-chalcone hybrids displayed strong to moderate hCES2A inhibition activities. Structure-hCES2A inhibition activity relationship studies showed that introduction of a hydroxyl at the C4' site and introduction of an N-alkyl group at the C6 site were beneficial for hCES2A inhibition. Particularly, B7 (an N-alkylated 1-indanone-chalcone hybrid) exhibited the most potent inhibition on hCES2A and excellent specificity (this agent could not inhibit other human esterases including hCES1A and butyrylcholinesterase). Inhibition kinetic analyses demonstrated that B7 potently inhibited hCES2A-mediated FD hydrolysis in a mixed inhibition manner, with a calculated Ki value of 0.068 µM. Furthermore, B7 was capable of inhibiting intracellular hCES2A in living cells and displayed good metabolic stability. Collectively, our findings show that indanone-chalcone hybrids are good choices for the development of hCES2A inhibitors, while B7 is a promising candidate for the development of novel anti-diarrhea agents to ameliorate irinotecan-induced intestinal toxicity.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Chalcones/chemistry , Chalcones/pharmacology , Indans/chemistry , Indans/pharmacology , Carboxylesterase/metabolism , Chalcones/chemical synthesis , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hep G2 Cells , Humans , Indans/chemical synthesis , Molecular Docking Simulation , Structure-Activity Relationship
20.
Bioorg Med Chem ; 29: 115853, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33214035

ABSTRACT

Pancreatic lipase (PL), a crucial enzyme responsible for hydrolysis of dietary lipids, has been validated as a key therapeutic target to prevent and treat obesity-associated metabolic disorders. Herein, we report the design, synthesis and biological evaluation of a series of chalcone-like compounds as potent and reversible PL inhibitors. Following two rounds of structural modifications at both A and B rings of a chalcone-like skeleton, structure-PL inhibition relationships of the chalcone-like compounds were studied, while the key substituents that would be beneficial for PL inhibition were revealed. Among all tested chalcone-like compounds, compound B13 (a novel chalcone-like compound bearing two long carbon chains) displayed the most potent PL inhibition activity, with an IC50 value of 0.33 µM. Inhibition kinetic analyses demonstrated that B13 could potently inhibit PL-mediated 4-MUO hydrolysis in a mixed inhibition manner, with the Ki value of 0.12 µM. Molecular docking simulations suggested that B13 could tightly bind on PL at both the catalytic site and a non-catalytic site that was located on the surface of PL, which was consistent with the mixed inhibition mode of this agent. In addition, B13 displayed excellent stability in artificial gastrointestinal fluids and good metabolic stability in human liver preparations. Collectively, our findings suggested that chalcone-like compounds were good choices for design and development of orally administrated PL inhibitors, while B13 could be served as a promising lead compound to develop novel anti-obesity agents via targeting on PL.


Subject(s)
Chalcone/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Lipase/antagonists & inhibitors , Animals , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lipase/metabolism , Molecular Docking Simulation , Molecular Structure , Pancreas/enzymology , Structure-Activity Relationship , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...