Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1187167, 2023.
Article in English | MEDLINE | ID: mdl-37547744

ABSTRACT

Introduction: Although the subthalamic nucleus (STN) has proven to be a safe and effective target for deep brain stimulation (DBS) in the treatment of primary dystonia, the rates of individual improvement vary considerably. On the premise of selecting appropriate patients, the location of the stimulation contacts in the dorsolateral sensorimotor area of the STN may be an important factor affecting therapeutic effects, but the optimal location remains unclear. This study aimed to define an optimal location using the medial subthalamic nucleus border as an anatomical reference and to explore the influence of the location of active contacts on outcomes and programming strategies in a series of patients with primary dystonia. Methods: Data from 18 patients who underwent bilateral STN-DBS were retrospectively acquired and analyzed. Patients were assessed preoperatively and postoperatively (1 month, 3 months, 6 months, 1 year, 2 years, and last follow-up after neurostimulator initiation) using the Toronto Western Spasmodic Torticollis Rating Scale (for cervical dystonia) and the Burke-Fahn-Marsden Dystonia Rating Scale (for other types). Optimal parameters and active contact locations were determined during clinical follow-up. The position of the active contacts relative to the medial STN border was determined using postoperative stereotactic MRI. Results: The clinical improvement showed a significant negative correlation with the y-axis position (anterior-posterior; A+, P-). The more posterior the electrode contacts were positioned in the dorsolateral sensorimotor area of the STN, the better the therapeutic effects. Cluster analysis of the improvement rates delineated optimal and sub-optimal groups. The optimal contact coordinates from the optimal group were 2.56 mm lateral, 0.15 mm anterior, and 1.34 mm superior relative to the medial STN border. Conclusion: STN-DBS was effective for primary dystonia, but outcomes were dependent on the active contact location. Bilateral stimulation contacts located behind or adjacent to Bejjani's line were most likely to produce ideal therapeutic effects. These findings may help guide STN-DBS preoperative planning, stimulation programming, and prognosis for optimal therapeutic efficacy in primary dystonia.

2.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772188

ABSTRACT

Honeycomb structure composites are taking an increasing proportion in aircraft manufacturing because of their high strength-to-weight ratio, good fatigue resistance, and low manufacturing cost. However, the hollow structure is very prone to liquid ingress. Here, we report a fast and automatic classification approach for water, alcohol, and oil filled in glass fiber reinforced polymer (GFRP) honeycomb structures through terahertz time-domain spectroscopy (THz-TDS). We propose an improved one-dimensional convolutional neural network (1D-CNN) model, and compared it with long short-term memory (LSTM) and ordinary 1D-CNN models, which are classification networks based on one dimension sequenced signals. The automated liquid classification results show that the LSTM model has the best performance for the time-domain signals, while the improved 1D-CNN model performed best for the frequency-domain signals.

SELECTION OF CITATIONS
SEARCH DETAIL
...