Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Opt Express ; 30(6): 9971-9982, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299410

ABSTRACT

When a bulk solid is irradiated by an intense laser pulse, transition dipole moments (TDMs) between different energy bands have an important influence on the ultra-fast dynamic process. In this paper, we propose a new all-optical method to reconstruct the k-dependent TDMs between multi-bands using a crystal high-order harmonic generation (HHG). Taking advantage of an obvious separation of bandgaps between three energy bands of an MgO crystal along the <001 > direction, a continuous harmonic spectrum with two plateaus can be generated by a two-color laser pulse. Furthermore, the first harmonic platform is mainly dominated by the polarization between the first conduction band and the valence band, and the second one is largely attributed to the interband HHG from the second conduction band and the valence band. Therefore, the harmonic spectrum from a single quantum trajectory can be adopted to map TDMs between the first, second conduction bands, and the valence one. Our work is of great significance for understanding the instantaneous properties of solid materials in the strong laser field, and will strongly promote the development of the HHG detection technology.

2.
Zhonghua Zhong Liu Za Zhi ; 35(8): 579-84, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24314214

ABSTRACT

OBJECTIVE: To detect the expression of phosphorylated-signal transducer and activator of transcription 3 (p-Stat3) and myeloid leukemia-1 (Mcl-1) as well as their correlation, and to investigate the functional role of Stat3 and Mcl-1 in the pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS: Stat3 activity in ESCC cells was inhibited with JAK/Stat3 inhibitors (AG490 or JSI-124). Specific siRNA was used to inhibit the Stat3 expression. Cell apoptosis was detected by flow cytometry. Expression of Mcl-1 protein was determined by Western blotting. Expression of phospho-Stat3 (Tyr705) and myeloid leukemia-1 (Mcl-1) proteins in ESCC tissues was detected by tissue microarray and immunohistochemistry. The relationship between p-Stat3 or Mcl-1 aberrant expression and clinicopatholohical features of ESCC was analyzed. The correlation of their expression was also analyzed. RESULTS: Suppression of the Stat3 signaling activation in ESCC cells led to marked apoptosis, and dramatic reduction of Mcl-1 protein. The positive rate of phospho-Stat3 (Tyr705) expression was 45.0% in 50/111 of the ESCC tissue samples. The lower the degree of tumor differentiation, the higher the positive rate of phospho-Stat3 (Tyr705), showing a significant difference (P = 0.018). The positive rate of Mcl-1 protein expression was 72.1% (80/111), and the lower the degree of tumor differentiation was, the higher there was the positive rate of Mcl-1, with a significant difference (P = 0.026). There was a positive correlation between the expressions of p-Stat3 and Mcl-1 proteins (P = 0.012). CONCLUSIONS: In a subset of ESCC tissues, p-Stat3 (Tyr705) and Mcl-1 are overexpressed and positively correlated with each other, and both are correlated with tumor differentiation. Persistent activation of Stat3 contributes to apoptotic resistance in ESCC cells, and may be at least partly mediated through upregulation of Mcl-1.


Subject(s)
Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , STAT3 Transcription Factor/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Survival/drug effects , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Humans , Neoplasm Grading , Neoplasm Staging , Phosphorylation , RNA, Small Interfering/genetics , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Tyrphostins/pharmacology
3.
Gastroenterology ; 142(3): 521-530.e3, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22108192

ABSTRACT

BACKGROUND & AIMS: Aberrant activation of the signal transducer and activator of transcription (Stat)3 and overexpression of polo-like kinase (PLK)1 each have been associated with cancer pathogenesis. The mechanisms and significance of dysregulation of Stat3 and PLK1 in carcinogenesis and cancer progression are unclear. We investigated the relationship between Stat3 and PLK1 and the effects of their dysregulation in esophageal squamous cell carcinoma (ESCC) cells. METHODS: We used immunoblot, quantitative reverse-transcription polymerase chain reaction, immunochemistry, chromatin immunoprecipitation, mobility shift, and reporter assays to investigate the relationship between Stat3 and PLK1. We used colony formation, fluorescence-activated cell sorting, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and xenograft tumor assays to determine the effects of increased activation of Stat3 and PLK1 in proliferation and survival of ESCC cells. RESULTS: Stat3 directly activated transcription of PLK1 in esophageal cancer cells and mouse embryonic fibroblast cell NIH3T3. PLK1 then potentiated the expression of Stat3; ß-catenin was involved in PLK1-dependent transcriptional activation of Stat3. This mutual regulation between Stat3 and PLK1 was required for proliferation of esophageal cancer cells and resistance to apoptosis in culture and as tumor xenografts in mice. Furthermore, phosphorylation of Stat3 and overexpression of PLK1 were correlated in a subset of ESCC. CONCLUSIONS: Stat3 and PLK1 control each other's transcription in a positive feedback loop that contributes to the development of ESCC. Increased activity of Stat3 and overexpression of PLK1 promote survival and proliferation of ESCC cells in culture and in mice.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Cell Cycle Proteins/metabolism , Cell Proliferation , Esophageal Neoplasms/enzymology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Separation/methods , Cell Survival , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Enzyme Activation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Feedback, Physiological , Female , Flow Cytometry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Nude , NIH 3T3 Cells , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Pteridines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , Signal Transduction , Time Factors , Transcriptional Activation , Transfection , Xenograft Model Antitumor Assays , beta Catenin/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...