Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701444

ABSTRACT

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

2.
Science ; 384(6695): 579-584, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696580

ABSTRACT

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

3.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564326

ABSTRACT

Optical thin films with high-reflectivity (HR) are essential for applications in quantum precision measurements. In this work, we propose a coating technique based on reactive magnetron sputtering with RF-induced substrate bias to fabricate HR-optical thin films. First, atomically flat SiO2 and Ta2O5 layers have been demonstrated due to the assistance of radio-frequency plasma during the coating process. Second, a distributed Bragg reflector (DBR) mirror with an HR of ∼99.999 328% centered at 1397 nm has been realized. The DBR structure is air-H{LH}19-substrate, in which the L and H denote a single layer of SiO2 with a thickness of 237.8 nm and a single layer of Ta2O5 with a thickness of 171.6 nm, respectively. This novel coating method would facilitate the development of HR reflectors and promote their wide applications in precision measurements.

4.
Phys Rev Lett ; 132(13): 130603, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613293

ABSTRACT

In the quest to build general-purpose photonic quantum computers, fusion-based quantum computation has risen to prominence as a promising strategy. This model allows a ballistic construction of large cluster states which are universal for quantum computation, in a scalable and loss-tolerant way without feed forward, by fusing many small n-photon entangled resource states. However, a key obstacle to this architecture lies in efficiently generating the required essential resource states on photonic chips. One such critical seed state that has not yet been achieved is the heralded three-photon Greenberger-Horne-Zeilinger (3-GHZ) state. Here, we address this elementary resource gap, by reporting the first experimental realization of a heralded 3-GHZ state. Our implementation employs a low-loss and fully programmable photonic chip that manipulates six indistinguishable single photons of wavelengths in the telecommunication regime. Conditional on the heralding detection, we obtain the desired 3-GHZ state with a fidelity 0.573±0.024. Our Letter marks an important step for the future fault-tolerant photonic quantum computing, leading to the acceleration of building a large-scale optical quantum computer.

5.
Phys Rev Lett ; 132(8): 083601, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457704

ABSTRACT

Quantum non-Gaussianity, a more potent and highly useful form of nonclassicality, excludes all convex mixtures of Gaussian states and Gaussian parametric processes generating them. Here, for the first time, we conclusively test quantum non-Gaussian coincidences of entangled photon pairs with the Clauser-Horne-Shimony-Holt-Bell factor S=2.328±0.004 from a single quantum dot with a depth up to 0.94±0.02 dB. Such deterministically generated photon pairs fundamentally overcome parametric processes by reducing crucial multiphoton errors. For the quantum non-Gaussian depth of the unheralded (heralded) single-photon state, we achieve the value of 8.08±0.05 dB (19.06±0.29 dB). Our Letter experimentally certifies the exclusive quantum non-Gaussianity properties highly relevant for optical sensing, communication, and computation.

6.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072603

ABSTRACT

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

7.
Sci Bull (Beijing) ; 68(15): 1625-1631, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37453825

ABSTRACT

Complex quantum electronic circuits can be used to design noise-protected qubits, but their complexity may exceed the capabilities of classical simulation. In such cases, quantum computers are necessary for efficient simulation. In this work, we demonstrate the use of variational quantum computing on a transmon-based quantum processor to simulate a superconducting quantum electronic circuit and design a new type of qubit called "Plasmonium", which operates in the plasmon-transition regime. The fabricated Plasmonium qubits show a high two-qubit gate fidelity of 99.58(3)%, as well as a smaller physical size and larger anharmonicity compared to transmon qubits. These properties make Plasmonium a promising candidate for scaling up multi-qubit devices. Our results demonstrate the potential of using quantum computers to aid in the design of advanced quantum processors.

8.
Nature ; 619(7971): 738-742, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438533

ABSTRACT

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

9.
Opt Lett ; 48(13): 3507-3510, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390167

ABSTRACT

The refractive index is a critical parameter in optical and photonic device design. However, due to the lack of available data, precise designs of devices working in low temperatures are still frequently limited. In this work, we have built a homemade spectroscopic ellipsometer (SE) and measured the refractive index of GaAs at a matrix of temperatures (4 K < T < 295 K) and photon wavelengths (700 nm < λ < 1000 nm) with a system error of ∼0.04. We verified the credibility of the SE results by comparing them with afore-reported data at room temperature and with higher precision values measured by vertical GaAs cavity at cryogenic temperatures. This work makes up for the lack of the near-infrared refractive index of GaAs at cryogenic temperatures and provides accurate reference data for semiconductor device design and fabrication.


Subject(s)
Photons , Refractometry , Temperature , Semiconductors
10.
Sci Bull (Beijing) ; 68(9): 906-912, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085397

ABSTRACT

Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.

11.
Sci Bull (Beijing) ; 68(8): 807-812, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36990872

ABSTRACT

Semiconductor quantum dots, as promising solid-state platform, have exhibited deterministic photon pair generation with high polarization entanglement fidelity for quantum information applications. However, due to temporal correlation from inherently cascaded emission, photon indistinguishability is limited, which restricts their potential scalability to multi-photon experiments. Here, by utilizing quantum interferences to decouple polarization entanglement from temporal correlation, we improve four-photon Greenberger-Horne-Zeilinger (GHZ) state entanglement fidelity from (58.7±2.2)% to (75.5±2.0)%. Our work paves the way to realize scalable and high-quality multi-photon states from quantum dots.

12.
Sci Bull (Beijing) ; 67(3): 240-245, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-36546072

ABSTRACT

To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles, and fidelity of FXEB=(3.66±0.345)×10-4. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature 574, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about 4.8×104 years), while Zuchongzhi 2.1 only takes about 4.2 h, thereby significantly enhancing the quantum computational advantage.

13.
Phys Rev Lett ; 129(3): 030501, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905349

ABSTRACT

Quantum error correction is a critical technique for transitioning from noisy intermediate-scale quantum devices to fully fledged quantum computers. The surface code, which has a high threshold error rate, is the leading quantum error correction code for two-dimensional grid architecture. So far, the repeated error correction capability of the surface code has not been realized experimentally. Here, we experimentally implement an error-correcting surface code, the distance-three surface code which consists of 17 qubits, on the Zuchongzhi 2.1 superconducting quantum processor. By executing several consecutive error correction cycles, the logical error can be significantly reduced after applying corrections, achieving the repeated error correction of surface code for the first time. This experiment represents a fully functional instance of an error-correcting surface code, providing a key step on the path towards scalable fault-tolerant quantum computing.

14.
Phys Rev Lett ; 127(18): 180501, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767433

ABSTRACT

Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature 574, 505 (2019)NATUAS0028-083610.1038/s41586-019-1666-5. We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.

15.
Science ; 372(6545): 948-952, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33958483

ABSTRACT

Quantum walks are the quantum mechanical analog of classical random walks and an extremely powerful tool in quantum simulations, quantum search algorithms, and even for universal quantum computing. In our work, we have designed and fabricated an 8-by-8 two-dimensional square superconducting qubit array composed of 62 functional qubits. We used this device to demonstrate high-fidelity single- and two-particle quantum walks. Furthermore, with the high programmability of the quantum processor, we implemented a Mach-Zehnder interferometer where the quantum walker coherently traverses in two paths before interfering and exiting. By tuning the disorders on the evolution paths, we observed interference fringes with single and double walkers. Our work is a milestone in the field, bringing future larger-scale quantum applications closer to realization for noisy intermediate-scale quantum processors.

16.
Phys Rev Lett ; 126(14): 140501, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891463

ABSTRACT

Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micropillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time. To characterize the performance of the CNOT gate, we estimate its average quantum gate fidelity of (87.8±1.2)%. As an application, we generated event-ready Bell states with a fidelity of (83.4±2.4)%. Our results are an important step towards the development of photon-photon quantum logic gates.

17.
Opt Express ; 28(13): 18917-18930, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672180

ABSTRACT

We report a proof-of-principle demonstration of Shor's algorithm with photons generated by an on-demand semiconductor quantum dot single-photon source for the first time. A fully compiled version of Shor's algorithm for factoring 15 has been accomplished with a significantly reduced resource requirement that employs the four-photon cluster state. Genuine multiparticle entanglement properties are confirmed to reveal the quantum character of the algorithm and circuit. The implementation realizes the Shor's algorithm with deterministic photonic qubits, which opens new applications for cluster state beyond one-way quantum computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...