Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2307981, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713722

ABSTRACT

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.

2.
PNAS Nexus ; 2(12): pgad390, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38059264

ABSTRACT

The prevalent use of light-emitting diodes (LEDs) has caused revolutionary changes in modern life, but the potential hazards to health of blue light are poorly understood. N6-methyladenosine (m6A) is the most prevalent posttranscriptional modification in eukaryotes and can modulate diverse physiological processes by regulating mRNA fate. Here, to understand the effects and molecular mechanisms of daily low-intensity blue light exposure (BLE) and ascertain whether m6A methylation plays a role in BLE-induced phenotypes, we constructed a series of Drosophila models under different durations of daily low-intensity BLE and obtained multiomics profiles. Our results revealed that BLE could induce transcriptomic, m6A epitranscriptomic, and metabolomic reprogramming in Drosophila along with aging process. Importantly, the m6A methylation sites enriched in the 5' untranslated regions (UTRs) of Drosophila transcripts showed strong age specificity and could be altered by BLE. We experimentally validated that aging-related gene Tor and circadian rhythm-related gene per were regulated by 5' UTR-enriched m6A methylation. Overall, our study provides a systematic assessment of m6A RNA methylome reprogramming by BLE and aging in Drosophila model.

3.
Int J Biol Macromol ; 149: 801-808, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31982530

ABSTRACT

Grifola frondosa is an edible and medicinal mushroom with great nutritional values and bioactivities. In the present study, a soluble homogeneous ß-glucan, GFPS, with high molecular mass of 5.42 × 106 Da was purified from the fruit bodies of Grifola frondosa using 5% cold NaOH. The structure of GFPS was determined with FT-IR, NMR, and monosaccharide composition analysis, and was identified to be a ß-D-(1-3)-linked glucan backbone with a single ß-D-(1-6)-linked glucopyranosyl residue branched at C-6 on every third residue. Our results indicated that GFPS had a triple helical structure and could form complex with polydeoxyadenylic acid (poly[A]). Further studies demonstrated that GFPS could interact with poly[A] moiety of a designed antisense oligonucleotide (ASO) targeting the primary transcript of proinflammatory cytokine TNFα (TNFα-A60). This GFPS-based complex could incorporate TNFα-A60 into the macrophage cells via dectin-1 receptor and attenuate lipopolysaccharide-induced secretion of TNFα. Our results suggested that GFPS could be applied to deliver therapeutic oligonucleotides for the treatment of diseases such as inflammation and cancers.


Subject(s)
Grifola/chemistry , Lectins, C-Type/metabolism , Oligonucleotides/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , beta-Glucans/chemistry , Agaricales/chemistry , Animals , Cytokines/metabolism , Mice , Molecular Conformation , Poly A , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...