Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38668491

ABSTRACT

Inflammatory bowel disease (IBD), a chronic disorder affecting the colon and rectum, involves the overproduction of pro-inflammatory cytokines causing damage to tight junctions (TJ) in the intestinal epithelial cells and chronic inflammation. The current mainstay of treatment, sulfasalazine, often causes adverse effects, thereby necessitating the exploration of alternative herbal medicines with fewer side effects. Portulaca oleracea L. (P. oleracea), a traditional medicinal herb, contains feruloyl amide compounds. We synthesized new compounds by conjugating ferulic acid (FA) with (±)-octopamine. Our study focused on novel FA derivatives that demonstrate protective effects against the intestinal epithelial barrier and inflammatory responses. In lipopolysaccharide-induced cells, C1 and C1a inhibited the production of inflammatory mediators. In Caco-2 cells, these compounds maintained the TJ protein expression, thereby demonstrating their protective effects on the epithelial barrier. In a mouse model of dextran sulfate sodium-induced IBD, a treatment with these compounds ameliorated features including a body weight reduction, colon shortening, an increased disease activity index, and histopathological changes. Furthermore, C1a demonstrated greater efficacy than C1 at the same concentration. These findings suggest that the novel FA derivative (C1a) effectively alleviates clinical signs and inflammatory mediators in IBD, making these compounds potential candidates as natural medicines for the treatment of IBD.

2.
J Exp Med ; 219(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35315876

ABSTRACT

Lymph node fibroblastic reticular cells (LN-FRCs) provide functional structure to LNs and play important roles in interactions between T cells and antigen-presenting cells. However, the direct impact of LN-FRCs on naive CD4+ T cell differentiation has not been explored. Here, we show that T cell zone FRCs of LNs (LN-TRCs) express CD25, the α chain of the IL-2 receptor heterotrimer. Moreover, LN-TRCs trans-present IL-2 to naive CD4+ T cells through CD25, thereby facilitating early IL-2-mediated signaling. CD25-deficient LN-TRCs exhibit attenuated STAT5 phosphorylation in naive CD4+ T cells during T cell differentiation, promoting T helper 17 (Th17) cell differentiation and Th17 response-related gene expression. In experimental autoimmune disease models, disease severity was elevated in mice lacking CD25 in LN-TRCs. Therefore, our results suggest that CD25 expression on LN-TRCs regulates CD4+ T cell differentiation by modulating early IL-2 signaling of neighboring, naive CD4+ T cells, influencing the overall properties of immune responses.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-2 Receptor alpha Subunit , Interleukin-2 , Animals , Cell Differentiation , Fibroblasts/metabolism , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Lymph Nodes , Mice
3.
Proc Natl Acad Sci U S A ; 117(33): 19994-20003, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747557

ABSTRACT

The transcriptional regulator YAP, which plays important roles in the development, regeneration, and tumorigenesis, is activated when released from inhibition by the Hippo kinase cascade. The regulatory mechanism of YAP in Hippo-low contexts is poorly understood. Here, we performed a genome-wide RNA interference screen to identify genes whose loss of function in a Hippo-null background affects YAP activity. We discovered that the coatomer protein complex I (COPI) is required for YAP nuclear enrichment and that COPI dependency of YAP confers an intrinsic vulnerability to COPI disruption in YAP-driven cancer cells. We identified MAP2K3 as a YAP regulator involved in inhibitory YAP phosphorylation induced by COPI subunit depletion. The endoplasmic reticulum stress response pathway activated by COPI malfunction appears to connect COPI and MAP2K3. In addition, we provide evidence that YAP inhibition by COPI disruption may contribute to transcriptional up-regulation of PTGS2 and proinflammatory cytokines. Our study offers a resource for investigating Hippo-independent YAP regulation as a therapeutic target for cancers and suggests a link between YAP and COPI-associated inflammatory diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coat Protein Complex I/metabolism , MAP Kinase Kinase 3/metabolism , Neoplasms/metabolism , RNA Interference , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Coat Protein Complex I/genetics , Gene Expression Regulation, Neoplastic , Genome , Hippo Signaling Pathway , Humans , MAP Kinase Kinase 3/genetics , Mice , Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/genetics , YAP-Signaling Proteins
4.
Pharmacol Res ; 159: 105027, 2020 09.
Article in English | MEDLINE | ID: mdl-32565308

ABSTRACT

Asthma is characterized by airway hyperresponsiveness and allergic inflammation, detrimentally affecting the patients' quality of life. The development of new drugs for the treatment of asthma is warranted to alleviate these issues. Recent studies have demonstrated that sirtuin2 (SIRT2) aggravates asthmatic inflammation by up-regulation of T-helper type 2 responses and macrophage polarization. However, effects of SIRT2 on mast cell activation remain obscure. In this study, we investigated the effects of AGK2, an inhibitor for SIRT2, on mast cell-mediated allergic airway inflammation. Pre-treatment with AGK2 inhibited degranulation of mast cells by suppressing the FcεRI signaling pathway and intracellular calcium influx. The expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-4, IL-5, IL-6, and IL-8, was inhibited via regulation of transcription factors such as NF-κB and NRF2. These effects of AGK2 were verified in passive cutaneous anaphylaxis and acute lung injury animal models. AGK2 attenuated Evans blue pigmentation by inhibiting mast cell activation and lung barrier dysfunction by inhibiting inflammatory responses in these animal models. In the ovalbumin (OVA)-induced allergic airway inflammation murine model, AGK2 alleviated allergic asthma symptoms such as lung histological changes (immune cell and mast cell infiltration, collagen deposition, and α-smooth muscle actin expression) and serum immunoglobulins (Ig) levels (IgE, OVA-specific IgE, IgG1, and IgG2a). Moreover, AGK2 reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-4, IL-5, and IL-6) and inflammatory mediators (myeloperoxidase, eosinophil peroxidase, and tumor growth factor-α) in the bronchoalveolar lavage fluid and lung tissues. In addition, the anti-fibrotic effects of AGK2 were verified using lung epithelial cells and TGF-ß/Smad reporter stable cells. In conclusion, our findings suggest that SIRT2 plays a role in mast cell-mediated airway inflammatory disease. Therefore, AGK2 is a good potential candidate for treating allergic asthma and lung inflammation.


Subject(s)
Airway Remodeling/drug effects , Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Furans/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Lung/drug effects , Mast Cells/drug effects , Quinolines/pharmacology , Receptors, IgE/antagonists & inhibitors , Sirtuin 2/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , A549 Cells , Animals , Asthma/enzymology , Asthma/immunology , Asthma/physiopathology , Cell Degranulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Female , Fibrosis , Histamine Release/drug effects , Humans , Inflammation Mediators/metabolism , Lung/enzymology , Lung/immunology , Lung/physiopathology , Male , Mast Cells/enzymology , Mast Cells/immunology , Mice, Inbred BALB C , Mice, Inbred ICR , Passive Cutaneous Anaphylaxis/drug effects , Rats, Sprague-Dawley , Receptors, IgE/metabolism , Signal Transduction , Sirtuin 2/metabolism
5.
Am J Chin Med ; 47(8): 1795-1814, 2019.
Article in English | MEDLINE | ID: mdl-31795744

ABSTRACT

Asthma is a common allergic airway inflammatory disease, characterized by abnormal breathing due to bronchial inflammation. Asthma aggravates the patient's quality of life and needs continuous pharmacological treatment. Therefore, discovery of drugs for the treatment of asthma is an important area of human health. The aim of the present study was to evaluate whether Cynanchum atratum extract (CAE) modulates the asthma-like allergic airway inflammation and to study its possible mechanism of action using ovalbumin (OVA)-induced airway inflammation and lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice, as well as a mast cell-based in vitro model. The histological analysis showed that CAE reduced the airway constriction and immune cell infiltration. CAE also inhibited release of ß-hexosaminidase and expression of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-4, and IL-5 in bronchoalveolar lavage fluid and lung tissues. In addition, CAE reduced the OVA-specific immunoglobulin (Ig) E, total IgE, IgG1, and IgG2a levels in the serum. In the LPS-induced ALI model, CAE suppressed the LPS-induced lung barrier dysfunction and the release of proinflammatory cytokines. Because allergic airway inflammatory responses are associated with the activation of mast cells, RBL-2H3 cells were used to evaluate the underlying mechanism of CAE effects. In RBL-2H3 cells, CAE down-regulated release of ß-hexosaminidase and histamine by reducing the intracellular calcium influx. In addition, CAE suppressed the expression of proinflammatory cytokines by inhibiting nuclear translocation of nuclear factor-κB. Taken together, our findings suggest that CAE may help in the prevention or treatment of airway inflammatory diseases.


Subject(s)
Asthma/drug therapy , Drugs, Chinese Herbal/administration & dosage , Mast Cells/drug effects , Mast Cells/immunology , Pulmonary Alveoli/immunology , Vincetoxicum/chemistry , Animals , Asthma/genetics , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Female , Humans , Immunoglobulin E/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Mice , Mice, Inbred BALB C , Pulmonary Alveoli/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...