Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
iScience ; 27(5): 109749, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706850

ABSTRACT

Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.

2.
Med ; 4(11): 761-777.e8, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37863058

ABSTRACT

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Kidney Diseases , Podocytes , Shiga-Toxigenic Escherichia coli , Child , Humans , Mice , Animals , Podocytes/metabolism , Podocytes/pathology , Shiga Toxin/genetics , Shiga Toxin/metabolism , Shiga Toxin/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Escherichia coli Infections/complications , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Hemolytic-Uremic Syndrome/drug therapy , Hemolytic-Uremic Syndrome/metabolism , Hemolytic-Uremic Syndrome/pathology , Shiga-Toxigenic Escherichia coli/metabolism , Complement Activation , Kidney Diseases/pathology
3.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556557

ABSTRACT

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Subject(s)
Kidney Diseases , Nephrotic Syndrome , Mice , Humans , Animals , Nephrotic Syndrome/genetics , Nephrotic Syndrome/therapy , Dependovirus/genetics , Albuminuria , Models, Genetic , Genetic Therapy/methods , Disease Models, Animal , Mice, Knockout , Genetic Vectors
4.
Clin Kidney J ; 6(2): 183-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-26019847

ABSTRACT

BACKGROUND: Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome is a multisystem autosomal-recessive disorder caused by defects in the VPS33B and VIPAR genes, involved in localization of apical membrane proteins. Affected children usually die by 1 year of age, often secondary to infective complications. The classic renal manifestation previously described in ARC syndrome is proximal-tubular dysfunction. The aim of this study is to gain further insight into the renal manifestations of this syndrome. METHODS: Clinical review of three cases of ARC syndrome presenting to a tertiary centre. Together with measurement of VPS33B and VIPAR protein expression in the human glomerulus. RESULTS: The cases demonstrated severe failure to thrive and in addition to commonly described features profound proteinuria and albuminuria, together with hypoalbuminaemia, suggesting glomerular involvement of this syndrome. Western blotting of conditionally immortalized human glomerular cells and ex vivo immunofluorescent analysis of the human glomerulus revealed that VPS33B and VIPAR were highly expressed in glomerular endothelium, and podocytes, but not in the mesangium. CONCLUSIONS: ARC syndrome affects the glomerulus as well as the proximal tubule in the kidney. Our molecular studies suggest that both cell types that constitute the glomerular filtration barrier are affected in this condition, providing an explanation for the albuminuria that we have observed in our cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...