Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781563

ABSTRACT

Prenatal exposure to viral pathogens has been known to cause the development of neuropsychiatric disorders in adulthood. Furthermore, COVID-19 has been associated with a variety of neurological manifestations, raising the question of whether in utero SARS-CoV-2 exposure can affect neurodevelopment, resulting in long-lasting behavioral and cognitive deficits. Using a human ACE-2-knock-in mouse model, we have previously shown that prenatal exposure to SARS-CoV-2 at later stages of development leads to fetal brain infection and gliosis in the hippocampus and cortex. In this study, we aimed to determine if infection of the fetal brain results in long-term neuroanatomical alterations of the cortex and hippocampus, as well as any cognitive deficits in adulthood. Here, we show that infected mice developed slower and weighed less in adulthood. We also found altered hippocampal and amygdala volume and aberrant newborn neuron morphology in the hippocampus of adult mice infected in utero. Furthermore, we observed sex-dependent alterations in anxiety-like behavior and locomotion, as well as hippocampal-dependent spatial memory. Taken together, our study revealed long-lasting neurological and cognitive changes as a result of prenatal SARS-CoV-2 infection, identifying a window for early intervention and highlighting the importance of immunization and antiviral intervention in pregnant women.

2.
Stem Cell Reports ; 18(7): 1516-1533, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37352850

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder, but its root cause may lie in neurodevelopment. PSEN1 mutations cause the majority of familial AD, potentially by disrupting proper Notch signaling, causing early unnoticed cellular changes that affect later AD progression. While rodent models are useful for modeling later stages of AD, human induced pluripotent stem cell-derived cortical spheroids (hCSs) allow access to studying the human cortex at the cellular level over the course of development. Here, we show that the PSEN1 L435F heterozygous mutation affects hCS development, increasing size, increasing progenitors, and decreasing post-mitotic neurons as a result of increased Notch target gene expression during early hCS development. We also show altered Aß expression and neuronal activity at later hCS stages. These results contrast previous findings, showing how individual PSEN1 mutations may differentially affect neurodevelopment and may give insight into fAD progression to provide earlier time points for more effective treatments.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation , Neurons/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
3.
Pharmacol Biochem Behav ; 202: 173115, 2021 03.
Article in English | MEDLINE | ID: mdl-33493546

ABSTRACT

Selective serotonin transport (SERT) inhibitors such as fluoxetine are the most commonly prescribed treatments for depression. Although efficacious for many symptoms of depression, motivational impairments such as psychomotor retardation, anergia, fatigue and amotivation are relatively resistant to treatment with SERT inhibitors, and these drugs have been reported to exacerbate motivational deficits in some people. In order to study motivational dysfunctions in animal models, procedures have been developed to measure effort-related decision making, which offer animals a choice between high effort actions leading to highly valued reinforcers, or low effort/low reward options. In the present studies, male and female rats were tested on two different tests of effort-based choice: a fixed ratio 5 (FR5)/chow feeding choice procedure and a running wheel (RW)/chow feeding choice task. The baseline pattern of choice differed across tasks for males and females, with males pressing the lever more than females on the operant task, and females running more than males on the RW task. Administration of the SERT inhibitor and antidepressant fluoxetine suppressed the higher effort activity on each task (lever pressing and wheel running) in both males and females. The serotonin receptor mediating the suppressive effects of fluoxetine is uncertain, because serotonin antagonists with different patterns of receptor selectivity failed to reverse the effects of fluoxetine. Nevertheless, these studies uncovered important sex differences, and demonstrated that the suppressive effects of fluoxetine on high effort activities are not limited to tasks involving food reinforced behavior or appetite suppressive effects. It is possible that this line of research will contribute to an understanding of the neurochemical factors regulating selection of voluntary physical activity vs. sedentary behaviors, which could be relevant for understanding the role of physical activity in psychiatric disorders.


Subject(s)
Antidepressive Agents/administration & dosage , Choice Behavior/drug effects , Feeding Behavior/drug effects , Fluoxetine/administration & dosage , Motor Activity/drug effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Reward , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...