Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 228: 115220, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36924686

ABSTRACT

This manuscript presents the design and facile production of screen-printed arrays (SPAs) for the internally validated determination of raised levels of serum procalcitonin (PCT). The screen-printing methodology produced SPAs with six individual working electrodes that exhibit an inter-array reproducibility of 3.64% and 5.51% for the electrochemically active surface area and heterogenous electrochemical rate constant respectively. The SPAs were modified with antibodies specific for the detection of PCT through a facile methodology, where each stage simply uses droplets incubated on the surface, allowing for their mass-production. This platform was used for the detection of PCT, achieving a linear dynamic range between 1 and 10 ng mL-1 with a sensor sensitivity of 1.35 × 10-10 NIC%/ng mL-1. The SPA produced an intra- and inter-day %RSD of 4.00 and 5.05%, with a material cost of £1.14. Internally validated human serum results (3 sample measurements, 3 control) for raised levels of PCT (>2 ng mL-1) were obtained, with no interference effects seen from CRP and IL-6. This SPA platform has the potential to offer clinicians vital information to rapidly begin treatment for "query sepsis" patients while awaiting results from more lengthy remote laboratory testing methods. Analytical ranges tested make this an ideal approach for rapid testing in specific patient populations (such as neonates or critically ill patients) in which PCT ranges are inherently wider. Due to the facile modification methods, we predict this could be used for various analytes on a single array, or the array increased further to maintain the internal validation of the system.


Subject(s)
Biosensing Techniques , Sepsis , Infant, Newborn , Humans , Procalcitonin , Reproducibility of Results , Sepsis/diagnosis , Antibodies
2.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502222

ABSTRACT

Changing the connection length of an additively manufactured electrode (AME) has a significant impact on the electrochemical and electroanalytical response of the system. In the literature, many electrochemical platforms have been produced using additive manufacturing with great variations in how the AME itself is described. It is seen that when measuring the near-ideal outer-sphere redox probe hexaamineruthenium (III) chloride (RuHex), decreasing the AME connection length enhances the heterogeneous electrochemical transfer (HET) rate constant (k0) for the system. At slow scan rates, there is a clear change in the peak-to-peak separation (ΔEp) observed in the RuHex voltammograms, with the ΔEp shifting from 118 ± 5 mV to 291 ± 27 mV for the 10 and 100 mm electrodes, respectively. For the electroanalytical determination of dopamine, no significant difference is noticed at low concentrations between 10- and 100-mm connection length AMEs. However, at concentrations of 1 mM dopamine, the peak oxidation is shifted to significantly higher potentials as the AME connection length is increased, with a shift of 150 mV measured. It is recommended that in future work, all AME dimensions, not just the working electrode head size, is reported along with the resistance measured through electrochemical impedance spectroscopy to allow for appropriate comparisons with other reports in the literature. To produce the best additively manufactured electrochemical systems in the future, researchers should endeavor to use the shortest AME connection lengths that are viable for their designs.


Subject(s)
Dopamine , Electrodes , Oxidation-Reduction
3.
Analyst ; 147(22): 5121-5129, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36222111

ABSTRACT

In this work, the electrochemical response of different morphologies (shapes) and dimensions of additively manufactured (3D-printing) carbon black (CB)/poly-lactic acid (PLA) electrodes are reported. The working electrodes (WE) are printed using standard non-conductive PLA based filament for the housing and commercial Protopasta (carbon black/PLA) filament for the electrode and connection parts. Discs, squares, equilateral triangles and six-point stars with varying working electrode (WE) widths from 2 to 10 mm are evaluated herein towards the well-known near-ideal outer sphere redox probe hexaamineruthenium(III) chloride (RuHex). The results obtained show that triangular and squared electrodes exhibit a faster heterogeneous electron transfer (HET) rate constant (k°) than those of discs and stars, the latter being the slowest one. The results reported here also show a trend between the WE dimension and the reversibility of the electrochemical reaction, which decreases as the WE size increases. It is also observed that the ratio of the geometrical and electroactive area (%realarea) decreases as the overall WE size increases. On the other hand, these four WE shapes were applied toward the well-known and benchmarking detection of ascorbic acid (AA), uric acid (UA), ß-nicotinamide adenine dinucleotide (NADH) and dopamine (DA). Moreover, electroanalytical detection of real acetaminophen (ACOP) samples is also showcased. The different designs for the working electrode proposed in this manuscript are easily changed to any other desired shapes thanks to the additive manufacturing methodology, these four shapes being just an example of what additive manufacturing can offer to experimentalists and to electrochemists in particular. Additive manufacturing is shown here as a versatile and rapid prototyping tool for the production of novel electrochemical sensing platforms, with scope for this work to be able to impact a wide variety of electroanalytical applications.


Subject(s)
Dopamine , Soot , Electrodes , Dopamine/analysis , Uric Acid , Polyesters , Electrochemical Techniques
4.
ACS Meas Sci Au ; 2(2): 167-176, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-36785725

ABSTRACT

This manuscript provides the first report of a fully additively manufactured (AM) electrochemical cell printed all-in-one, where all the electrodes and cell are printed as one, requiring no post-assembly or external electrodes. The three-electrode cell is printed using a standard non-conductive poly(lactic acid) (PLA)-based filament for the body and commercially available conductive carbon black/PLA (CB/PLA, ProtoPasta) for the three electrodes (working, counter, and reference; WE, CE, and RE, respectively). The electrochemical performance of the cell is evaluated first against the well-known near-ideal outer-sphere redox probe hexaamineruthenium(III) chloride (RuHex), showing that the cell performs well using an AM electrode as the pseudo-RE. Electrochemical activation of the WE via chronoamperometry and NaOH provides enhanced electrochemical performances toward outer-sphere probes and for electroanalytical performance. It is shown that this activation can be completed using either an external commercial Ag|AgCl RE or through simply using the internal AM CB/PLA pseudo-RE and CE. This all-in-one electrochemical cell (AIOEC) was applied toward the well-known detection of ascorbic acid (AA) and acetaminophen (ACOP), achieving linear trends with limits of detection (LODs) of 13.6 ± 1.9 and 4.5 ± 0.9 µM, respectively. The determination of AA and ACOP in real samples from over-the-counter effervescent tablets was explored, and when analyzed individually, recoveries of 102.9 and 100.6% were achieved against UV-vis standards, respectively. Simultaneous detection of both targets was also achieved through detection in the same sample exhibiting 149.75 and 81.35% recoveries for AA and ACOP, respectively. These values differing from the originals are likely due to electrode fouling due to the AA oxidation being a surface-controlled process. The cell design produced herein is easily tunable toward different sample volumes or container shapes for various applications among aqueous electroanalytical sensing; however, it is a simple example of the capabilities of this manufacturing method. This work illustrates the next step in research synergising AM and electrochemistry, producing operational electrochemical sensing platforms in a single print, with no assembly and no requirements for exterior or commercial electrodes. Due to the flexibility, low-waste, and rapid prototyping of AM, there is scope for this work to be able to span and impact a plethora of research areas.

5.
Anal Chem ; 93(49): 16481-16488, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34854668

ABSTRACT

Screen-printed electrodes (SPEs) are ubiquitous within the field of electrochemistry and are commonplace within the arsenal of electrochemists. Their popularity stems from their reproducibility, versatility, and extremely low-cost production, allowing their utilization as single-shot electrodes and thus removing the need for tedious electrode pretreatments. Many SPE studies have explored changing the working electrode composition and/or size to benefit the researcher's specific applications. In this paper, we explore a critical parameter of SPEs that is often overlooked; namely, we explore changing the length of the SPE connections. We provide evidence of resistance changes through altering the connection length to the working electrode through theoretical calculations, multimeter measurements, and electrochemical impedance spectroscopy (EIS). We demonstrate that changing the physical length of SPE connections gives rise to more accurate heterogeneous electrode kinetics, which cannot be overcome simply through IR compensation. Significant improvements are observed when utilized as the basis of electrochemical sensing platforms for sodium nitrite, ß-nicotinamide adenine dinucleotide (NADH), and lead (II). This work has a significant impact upon the field of SPEs and highlights the need for researchers to characterize and define their specific electrode performance. Without such fundamental characterization as the length and resistance of the SPE used, direct comparisons between two different systems for similar applications are obsolete. We therefore suggest that, when using SPEs in the future, experimentalists report the length of the working electrode connection alongside the measured resistance (multimeter or EIS) to facilitate this standardization across the field.


Subject(s)
Reproducibility of Results , Electrochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...