Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 108: 129810, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38782078

ABSTRACT

PCI-34051 is a valuable tool to interrogate the therapeutic effects of selective inhibition of HDAC8. However, it has not advanced to clinical trials, perhaps due to poor PK or off-target effects. We hypothesized that the presence of a hydroxamic acid (HA) group in PCI-34051 contributed to its lack of advancement. Therefore, we replaced the HA in the PCI-34051 scaffold with a series of moieties that have the potential to bind to Zn and evaluated their activity in a HDAC8 assay. Surprisingly, none of the replacements effectively mimicked the HA, and analogs lost significant potency. Evaluation of the analogs' affinity to Zn indicated that none had affinity for Zn within the same range as the HA. These studies point to the difficulty in the application of bioisosteric replacements for Zn binding motifs.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Hydroxamic Acids , Repressor Proteins , Histone Deacetylases/metabolism , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Structure-Activity Relationship , Zinc/chemistry , Zinc/pharmacology , Molecular Structure , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Dose-Response Relationship, Drug , Indoles
10.
ACS Med Chem Lett ; 14(7): 977-985, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465292

ABSTRACT

The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.

11.
Bioorg Med Chem Lett ; 91: 129363, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37295616

ABSTRACT

Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pKa), lipophilicity (logD7.4), and permeability (PAMPA). The results presented can help estimate the relative changes in physicochemical properties that may be attainable by replacing the carboxylic acid functional group with fluorine containing surrogate structures.


Subject(s)
Alcohols , Carboxylic Acids , Carboxylic Acids/chemistry , Fluorine/chemistry
17.
ACS Pharmacol Transl Sci ; 5(4): 207-215, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35434532

ABSTRACT

Acute kidney injury (AKI), a sudden loss of kidney function, is a common and serious condition for which there are no approved specific therapies. While there are multiple approaches to treat the underlying causes of AKI, no targets have been clinically validated. Here, we assessed a series of potent, selective competitive inhibitors of histone deacetylase 8 (HDAC8), a promising therapeutic target in an AKI setting. Using biochemical assays, zebrafish AKI phenotypic assays, and human kidney organoid assays, we show that selective HDAC8 inhibitors can lead to efficacy in increasingly stringent models. One of these, PCI-34051, was efficacious in a rodent model of AKI, further supporting the potential for HDAC8 inhibitors and, in particular, this scaffold as a therapeutic approach to AKI.

18.
ACS Nano ; 15(5): 8376-8385, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33900731

ABSTRACT

Recent progress in the development of affinity grids for cryoelectron microscopy (cryo-EM) typically employs genetic engineering of the protein sample such as histidine or Spy tagging, immobilized antibody capture, or nonselective immobilization via electrostatic interactions or Schiff base formation. We report a powerful and flexible method for the affinity capture of target proteins for cryo-EM analysis that utilizes small-molecule ligands as bait for concentrating human target proteins directly onto the grid surface for single-particle reconstruction. This approach is demonstrated for human p97, captured using two different small-molecule high-affinity ligands of this AAA+ ATPase. Four electron density maps are revealed, each representing a p97 conformational state captured from solution, including a double-hexamer structure resolved to 3.6 Å. These results demonstrate that the noncovalent capture of protein targets on EM grids modified with high-affinity ligands can enable the structure elucidation of multiple configurational states of the target and potentially inform structure-based drug design campaigns.


Subject(s)
Antibodies , Cryoelectron Microscopy , Humans , Ligands , Physical Phenomena
19.
ACS Med Chem Lett ; 11(11): 2051-2052, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214806
20.
ACS Chem Neurosci ; 11(17): 2535-2542, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786299

ABSTRACT

Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder for which there is no cure or approved treatment. It is characterized by the loss or impaired activity of frataxin protein, which is involved in the biogenesis of iron-sulfur clusters. Our previous studies suggested that cell death in FRDA may involve ferroptosis, an iron-dependent form of cell death requiring lipid peroxidation. Based on reports that oleic acid acts as a ferroptosis inhibitor, we evaluated whether it, other fatty acids, and fatty acid derivatives could rescue viability in cellular models of FRDA. We identified a trifluoromethyl alcohol analog of oleic acid that was significantly more potent than oleic acid itself. Further evaluation indicated that the effects were stereoselective, although a specific molecular target has not yet been identified. This work provides a potential starting point for therapeutics to treat FRDA, as well as a valuable probe molecule to interrogate FRDA pathophysiology.


Subject(s)
Ferroptosis , Friedreich Ataxia , Friedreich Ataxia/drug therapy , Friedreich Ataxia/metabolism , Humans , Iron-Binding Proteins/metabolism , Lipid Peroxidation , Mitochondria/metabolism , Oleic Acid/metabolism , Oleic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...