Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Transl Vis Sci Technol ; 13(9): 4, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226063

ABSTRACT

Purpose: Hereditary eye diseases (HEDs) are individually rare but affect millions globally. The era of molecular genetics has ushered major advances in the study of these disorders; however, the inclusivity and population diversity of this research is unknown. Questions on the accuracy and applicability of these findings in diverse populations, especially African American patients, came up consistently during counselling sessions. This also raised the possibility of missed opportunities for broader understanding of these rare diseases. We conducted a literature review to measure the representation of African Americans in genomic research surrounding nine HEDs. Methods: A detailed literature search using a predetermined set of search terms for each of nine HED categories was performed across PubMed, Embase, Web of Science, and Scopus focusing on studies published between Jan 1990 and July 2021. Predetermined inclusion criteria were applied to filter the sources. Results: We identified 46 studies clearly reporting HED characterization in African Americans. Analysis of these inclusive studies revealed unique findings demonstrating the known usefulness of including diverse cohorts in genomics research. Conclusions: HED characterization in diverse participants, specifically African Americans, is identified as a knowledge gap area. Genomic research is more applicable to patients when conducted in populations that share their ancestral background. Greater inclusion of African Americans in ophthalmic genetics research is a scientific imperative and a needed step in the pursuit of the best possible patient care for populations of all ancestries. Translational Relevance: This work reveals gaps in genomic research in African Americans with HEDs.


Subject(s)
Black or African American , Eye Diseases, Hereditary , Humans , Black or African American/genetics , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/ethnology , Genomics/methods
2.
Nucleic Acid Ther ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264859

ABSTRACT

Autosomal dominant optic atrophy (ADOA) is an inherited optic neuropathy most frequently associated with OPA1 mutations. Most variants result in haploinsufficiency, and patient cells express roughly half of the normal levels of OPA1 protein. OPA1 is a mitochondrial GTPase that is essential for normal mitochondrial function. We identified and characterized STK-002, an antisense oligonucleotide (ASO) designed to prevent the incorporation of a naturally occurring alternatively spliced nonproductive exon in OPA1. STK-002 dose dependently reduced the inclusion of this exon, and increased OPA1 protein in human cells, including ADOA patient-derived fibroblasts. ADOA patient cells manifest reduced mitochondrial respiration, and treatment with STK-002 improved the parameters of mitochondrial respiratory function in these cells. Since STK-002 increases OPA1 through the wild-type allele, we assessed retinal OPA1 in wild-type cynomolgus monkeys and rabbits after intravitreal administration of STK-002 or a rabbit-specific surrogate. Increased OPA1 protein was produced in retinal tissue in both species at 4 weeks after ASO injection and persisted in monkeys at 8 weeks. STK-002 and enhanced OPA1 immunofluorescence were visualized in retinal ganglion cells of cynomolgus monkeys treated with the ASO. Cumulatively, these data support the progression of STK-002 toward the clinic as the first potential disease-modifying treatment for ADOA.

3.
JAMA Ophthalmol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325468

ABSTRACT

Importance: Inherited retinal dystrophies (IRDs) present a challenge in clinical diagnostics due to their pronounced genetic heterogeneity. Despite advances in next-generation sequencing (NGS) technologies, a substantial portion of the genetic basis underlying IRDs remains elusive. Addressing this gap seems important for gaining insights into the genetic landscape of IRDs, which may help improve diagnosis and prognosis and develop targeted therapies in the future. Objective: To provide a clinical and molecular characterization of 6 patients with IRDs with biallelic disease-causing variants in a novel candidate IRD disease gene. Design, Setting, and Participants: This multicenter case series study included 6 patients with IRDs from 4 tertiary hospitals (in the US: National Eye Institute, National Institutes of Health Clinical Center; in the UK: Moorfields Eye Hospital, Royal Liverpool University Hospital, Birmingham Women's and Children's). Exposures: Biallelic disease-causing variants in the novel candidate IRD disease gene, UBAP1L. Main Outcome and Measures: Participants underwent comprehensive clinical ophthalmic assessments to characterize the features of retinal dystrophy. Exome and genome sequencing revealed candidate variants in the UBAP1L gene; no other plausible disease variants in known IRD genes were identified. A minigene assay provided functional insights for a noncanonical splice variant, and a knockout mouse model was used for in vivo functional elucidation. Results: Four homozygous UBAP1L variants were identified in the affected individuals from 6 families, including 2 frameshift variants (c.710del and c.634_644del), 1 canonical splice variant (c.121-2A>C), and 1 noncanonical splice variant (c.910-7G>A), which was shown to cause aberrant splicing and frameshift in a minigene assay. Participants presented with retinal dystrophy including maculopathy, cone dystrophy, and cone-rod dystrophy. Single-cell RNA sequencing of the retina showed that human UBAP1L is highly expressed in both cones and retinal pigment epithelium, whereas mouse Ubap1l is highly expressed in cone cells only. Mice with truncation of the C-terminal SOUBA domain did not manifest retinal degeneration up to 15 months of age. Conclusions and Relevance: Study results reveal clinical and genetic evidence that loss of UBAP1L function was associated with inherited retinopathy in humans. These findings hold promise for improved clinical diagnostics, prognosis, and the potential development of targeted therapies for individuals affected by IRDs.

4.
JBMR Plus ; 8(9): ziae089, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39108358

ABSTRACT

Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by germline heterozygous PTHR1 variants resulting in constitutive activation of parathyroid hormone type 1 receptor. A description of ocular manifestations of the disease is lacking. Six patients with JMC underwent a detailed ophthalmic evaluation, spectral-domain optical coherence tomography (OCT), visual field testing, and craniofacial CT scans. Five of 6 patients had good visual acuity. All patients had widely spaced eyes; 5/6 had downslanted palpebral fissures. One patient had proptosis, and another had bilateral ptosis. Two patients had incomplete closure of the eyelids (lagophthalmos), one had a history of progressive right facial nerve palsy with profuse epiphora, while the second had advanced optic nerve atrophy with corresponding retinal nerve fiber layer (RNFL) thinning on OCT and significant bilateral optic canal narrowing on CT scan. Additionally, this patient also had central visual field defects and abnormal color vision. A third patient had normal visual acuity, subtle temporal pallor of the optic nerve head, normal average RNFL, but decreased temporal RNFL and retinal ganglion cell layer analysis (GCA) on OCT. GCA was decreased in 4/6 patients indicating a subclinical optic nerve atrophic process. None of the patients had glaucoma or high myopia. These data represent the first comprehensive report of ophthalmic findings in JMC. Patients with JMC have significant eye findings associated with optic canal narrowing due to extensive skull base dysplastic bone overgrowth that appear to be more prevalent and pronounced with age. Progressive optic neuropathy from optic canal narrowing may be a feature of JMC, and OCT GCA can serve as a useful biomarker for progression in the setting of optic canal narrowing. We suggest that patients with JMC should undergo regular ophthalmic examination including color vision, OCT, visual field testing, orbital, and craniofacial imaging.

5.
Brain ; 147(6): 2085-2097, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38735647

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.


Subject(s)
Phenotype , Animals , Female , Humans , Male , Mice , Acyltransferases , Carboxylic Ester Hydrolases/genetics , Mutation, Missense , Phospholipases/genetics , Retinal Diseases/genetics
6.
Genet Med ; 26(7): 101144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641994

ABSTRACT

PURPOSE: GM1 gangliosidosis (GM1) a lysosomal disorder caused by pathogenic variants in GLB1, is characterized by relentless neurodegeneration. There are no approved treatments. METHODS: Forty-one individuals with type II (late-infantile and juvenile) GM1 participated in a single-site prospective observational study. RESULTS: Classification of 37 distinct variants using American College of Medical Genetics and Genomics criteria resulted in the upgrade of 6 and the submission of 4 new variants. In contrast to type I infantile disease, children with type II had normal or near normal hearing and did not have cherry-red maculae or hepatosplenomegaly. Some older children with juvenile onset disease developed thickened aortic and/or mitral valves. Serial magnetic resonance images demonstrated progressive brain atrophy, more pronounced in late infantile patients. Magnetic resonance spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale, progressing more rapidly in late infantile compared with juvenile onset disease. CONCLUSION: Serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies common misconceptions about type II patients; these are pivotal steps toward more timely diagnosis and better supportive care. The data amassed through this 10-year effort will serve as a robust comparator for ongoing and future therapeutic trials.


Subject(s)
Gangliosidosis, GM1 , Magnetic Resonance Imaging , Humans , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/pathology , Female , Male , Prospective Studies , Child, Preschool , Child , Infant , Adolescent , Phenotype , Brain/diagnostic imaging , Brain/pathology , Mutation , Disease Progression , Adult , beta-Galactosidase
7.
Retina ; 44(7): 1260-1267, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38478753

ABSTRACT

PURPOSE: To describe a novel optical coherence tomography (OCT) finding of outer retina microcavitations in RP1 -related retinopathy and other retinal degenerations. METHODS: Medical charts and OCT images of 28 patients with either autosomal dominant retinitis pigmentosa or autosomal recessive retinitis pigmentosa RP1 -related retinopathy were reviewed. Outer retina microcavitations were defined as hyporeflective OCT structures of at least 30 µ m in diameter between the ellipsoid zone and retinal pigment epithelium. Comparison was made based on the following metrics: (1) functional measures including best-corrected visual acuity and color discrimination errors on D-15 test; and (2) structural measures, including central subfield, average macular thickness, and preserved transfoveal ellipsoid zone width. Mann-Whitney tests were used for comparisons with significance set at P < 0.05. The specificity of microcavitations for RP1 -related retinopathy was estimated against 26 patients with non- RP1 retinitis pigmentosa. RESULTS: Among 15 included patients, microcavitations were found in at least one eye of all patients with arRP and 7/12 (58%) of patients with adRP. Patients with adRP and microcavitations were older at the time of examination (51 vs. 43 years of age; P = 0.04) and their eyes demonstrated worse best-corrected visual acuity (0.09 vs. 0 logMAR; P = 0.008), reduced central subfield (256 vs. 293 µ m; P = 0.01), average macular thickness (241 vs. 270 µ m; P = 0.02), and shorter transfoveal ellipsoid zone widths (1.67 vs. 4.98 mm; P < 0.0001). The finding of microcavitations showed a specificity of 0.92 for RP1 -related retinopathy. CONCLUSION: A novel OCT finding of outer retina microcavitations was commonly observed in patients with RP1 -related retinopathy. Eyes with outer retinal OCT microcavitations had worse visual function and more affected central retinal structure.


Subject(s)
Retinitis Pigmentosa , Tomography, Optical Coherence , Visual Acuity , Humans , Tomography, Optical Coherence/methods , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/physiopathology , Male , Female , Middle Aged , Adult , Visual Acuity/physiology , Retrospective Studies , Eye Proteins/genetics , Eye Proteins/metabolism , Aged , Retinal Pigment Epithelium/pathology , Young Adult , Adolescent , Microtubule-Associated Proteins
8.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38507752

ABSTRACT

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Giant Axonal Neuropathy , Child , Humans , Cytoskeletal Proteins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/therapy , Transgenes , Injections, Spinal
9.
medRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38313286

ABSTRACT

Purpose: GM1 gangliosidosis (GM1) is an ultra-rare lysosomal storage disease caused by pathogenic variants in galactosidase beta 1 (GLB1; NM_000404), primarily characterized by neurodegeneration, often in children. There are no approved treatments for GM1, but clinical trials using gene therapy (NCT03952637, NCT04713475) and small molecule substrate inhibitors (NCT04221451) are ongoing. Understanding the natural history of GM1 is essential for timely diagnosis, facilitating better supportive care, and contextualizing the results of therapeutic trials. Methods: Forty-one individuals with type II GM1 (n=17 late infantile and n=24 juvenile onset) participated in a single-site prospective observational study. Here, we describe the results of extensive multisystem assessment batteries, including clinical labs, neuroimaging, physiological exams, and behavioral assessments. Results: Classification of 37 distinct variants in this cohort was performed according to ACMG criteria and resulted in the upgrade of six and the submission of four new variants to pathogenic or likely pathogenic. In contrast to type I infantile, children with type II disease exhibited normal or near normal hearing and did not have cherry red maculae or significant hepatosplenomegaly. Some older children with juvenile onset developed thickened aortic and/or mitral valves with regurgitation. Serial MRIs demonstrated progressive brain atrophy that were more pronounced in those with late infantile onset. MR spectroscopy showed worsening elevation of myo-inositol and deficit of N-acetyl aspartate that were strongly correlated with scores on the Vineland Adaptive Behavior Scale and progress more rapidly in late infantile than juvenile onset disease. Conclusion: The comprehensive serial phenotyping of type II GM1 patients expands the understanding of disease progression and clarifies some common misconceptions about type II patients. Findings from this 10-year endeavor are a pivotal step toward more timely diagnosis and better supportive care for patients. The wealth of data amassed through this effort will serve as a robust comparator for ongoing and future therapeutic trials.

10.
medRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38076877

ABSTRACT

Splice variants are known to cause diseases by utilizing alternative splice sites, potentially resulting in protein truncation or mRNA degradation by nonsense-mediated decay. Splice variants are verified when altered mature mRNA sequences are identified in RNA analyses or minigene assays. Using a quantitative minigene assay, qMini, we uncovered a previously overlooked class of disease-associated splice variants that did not alter mRNA sequence but decreased mature mRNA level, suggesting a potentially new pathogenic mechanism.

11.
Invest Ophthalmol Vis Sci ; 64(12): 19, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37695603

ABSTRACT

Purpose: To describe a group of patients with retinitis pigmentosa GTPase regulator (RPGR)-related retinopathy with a tapetal-like retinal sheen and corresponding changes in the reflectivity of the ellipsoid zone on optical coherence tomography (OCT) imaging. Methods: A retrospective case series of 66 patients with a disease-causing variant in RPGR was performed. An expert examiner, masked to patient demographics, clinical evaluations, and specific RPGR variant, analyzed color fundus photographs for the presence of a tapetal-like retinal sheen and assessed OCT images for the presence of an abnormally broad hyper-reflective band in the outer retina. Longitudinal reflectivity profiles were generated and compared with healthy controls. Results: Twelve patients (18.2%) had a retinal sheen on color images that cosegregated with an abnormally broad hyper-reflective ellipsoid zone band on OCT imaging. Three-fourths of these patients were male, had a cone-rod dystrophy, and had pathogenic RPGR variants located toward the 3'-end of ORF15. This group had a different longitudinal reflectivity profile signature compared with controls. After a period of prolonged dark adaptation, the abnormal hyper-reflective band on OCT became less apparent, and the outer retinal layers adopted a more normal appearance. Conclusions: RPGR-related retinopathy should be considered for males presenting with retinal sheen, abnormal ellipsoid zone hyper-reflectivity, and cone or cone-rod dysfunction on ERG, and pursued with molecular testing. Our results have implications for understanding the role of the C-terminal domain encoded by RPGR ORF15 in the phototransduction cascade. Further, the findings may be important to incorporate into both inclusion criteria and outcome measure developments in future RPGR-related cone or cone-rod dystrophy clinical trials.


Subject(s)
Cone-Rod Dystrophies , Retinal Diseases , Humans , Male , Female , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Retrospective Studies , Retina , Retinal Cone Photoreceptor Cells , Eye Proteins/genetics
12.
Adv Exp Med Biol ; 1415: 289-295, 2023.
Article in English | MEDLINE | ID: mdl-37440047

ABSTRACT

Stargardt disease (STGD1) is the most common inherited retina degeneration. It is caused by biallelic ABCA4 variants, and no treatment is available to date. STGD1 shows marked phenotypic variability, especially regarding the age of onset. The underlying genotype can partially explain this variability. Notably, a subset of ABCA4 variants was previously associated with an earlier disease onset than truncating ABCA4 variants, pointing toward pathogenic mechanisms beyond the loss of gene function in these patients. On the other end of the spectrum, variants such as p.Gly1961Glu were associated with markedly slower extrafoveal disease progression. Given that these drastic differences in phenotype are based on genotype (resulting in important prognostic implications for patients), this chapter reviews previous approaches to genotype-phenotype correlation analyses in STGD1.


Subject(s)
Macular Degeneration , Humans , Macular Degeneration/genetics , Macular Degeneration/pathology , ATP-Binding Cassette Transporters/genetics , Stargardt Disease , Genotype , Phenotype , Genetic Association Studies , Mutation
13.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333224

ABSTRACT

Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.

14.
Front Immunol ; 14: 1172004, 2023.
Article in English | MEDLINE | ID: mdl-37215141

ABSTRACT

Purpose: Though copy number variants (CNVs) have been suggested to play a significant role in inborn errors of immunity (IEI), the precise nature of this role remains largely unexplored. We sought to determine the diagnostic contribution of CNVs using genome-wide chromosomal microarray analysis (CMA) in children with IEI. Methods: We performed exome sequencing (ES) and CMA for 332 unrelated pediatric probands referred for evaluation of IEI. The analysis included primary, secondary, and incidental findings. Results: Of the 332 probands, 134 (40.4%) received molecular diagnoses. Of these, 116/134 (86.6%) were diagnosed by ES alone. An additional 15/134 (11.2%) were diagnosed by CMA alone, including two likely de novo changes. Three (2.2%) participants had diagnostic molecular findings from both ES and CMA, including two compound heterozygotes and one participant with two distinct diagnoses. Half of the participants with CMA contribution to diagnosis had CNVs in at least one non-immune gene, highlighting the clinical complexity of these cases. Overall, CMA contributed to 18/134 diagnoses (13.4%), increasing the overall diagnostic yield by 15.5% beyond ES alone. Conclusion: Pairing ES and CMA can provide a comprehensive evaluation to clarify the complex factors that contribute to both immune and non-immune phenotypes. Such a combined approach to genetic testing helps untangle complex phenotypes, not only by clarifying the differential diagnosis, but in some cases by identifying multiple diagnoses contributing to the overall clinical presentation.


Subject(s)
Chromosomes , Genetic Testing , Humans , Child , Exome Sequencing , Microarray Analysis , Phenotype
15.
Am J Ophthalmol ; 253: 224-232, 2023 09.
Article in English | MEDLINE | ID: mdl-37211138

ABSTRACT

PURPOSE: To systematically assess the ability to detect change and retest reliability for a panel of visual function assessments in ABCA4 retinopathy. DESIGN: Prospective natural history study (NCT01736293). METHODS: Patients with at least 1 documented pathogenic ABCA4 variant and a clinical phenotype consistent with ABCA4 retinopathy were recruited from a tertiary referral center. Participants underwent longitudinal, multifaceted functional testing, including measures of function at fixation (best-corrected visual acuity, low-vision Cambridge Color Test), macular function (microperimetry), and retina-wide function (full-field electroretinography [ERG]). Two- and 5-year ability to detect change was determined based on the η2 statistic. RESULTS: A total of 134 eyes from 67 participants with a mean follow-up of 3.65 years were included. In the 2-year interval, the microperimetry-derived perilesional sensitivity (η2 of 0.73 [0.53, 0.83]; -1.79 dB/y [-2.2, -1.37]) and mean sensitivity (η2 of 0.62 [0.38, 0.76]; -1.28 dB/y [-1.67, -0.89]) showed most change over time, but could only be recorded in 71.6% of the participants. In the 5-year interval, the dark-adapted ERG a- and b-wave amplitude showed marked change over time as well (eg, DA 30 a-wave amplitude with an η2 of 0.54 [0.34, 0.68]; -0.02 log10(µV)/y [-0.02, -0.01]). The genotype explained a large fraction of variability in the ERG-based age of disease initiation (adjusted R2 of 0.73) CONCLUSIONS: Microperimetry-based clinical outcome assessments were most sensitive to change but could only be acquired in a subset of participants. Across a 5-year interval, the ERG DA 30 a-wave amplitude was sensitive to disease progression, potentially allowing for more inclusive clinical trial designs encompassing the whole ABCA4 retinopathy spectrum.


Subject(s)
Retinal Diseases , Visual Fields , Humans , Visual Field Tests , Prospective Studies , Reproducibility of Results , Retina , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Electroretinography , Vision Disorders/diagnosis , Vision Disorders/genetics , ATP-Binding Cassette Transporters/genetics
16.
iScience ; 26(1): 105755, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594026

ABSTRACT

Blood cells trapped in stasis have been reported within the microcirculation, but their relevance to health and disease has not been established. In this study, we introduce an in vivo imaging approach that reveals the presence of a previously-unknown pool of erythrocytes in stasis, located within capillary segments of the CNS, and present in 100% of subjects imaged. These results provide a key insight that blood cells pause as they travel through the choroidal microvasculature, a vascular structure that boasts the highest blood flow of any tissue in the body. Demonstration of clinical utility using deep learning reveals that erythrocyte stasis is altered in glaucoma, indicating the possibility of more widespread changes in choroidal microvascular than previously realized. The ability to monitor the choroidal microvasculature at the single cell level may lead to novel strategies for tracking microvascular health in glaucoma, age-related macular degeneration, and other neurodegenerative diseases.

17.
Br J Ophthalmol ; 107(10): 1554-1559, 2023 10.
Article in English | MEDLINE | ID: mdl-35760456

ABSTRACT

BACKGROUND/AIMS: To characterise the ocular manifestations of Williams-Beuren syndrome (WBS) and compare these to patients with isolated elastin mediated supravalvular aortic stenosis (SVAS). METHODS: Fifty-seven patients with a diagnosis of WBS and five with SVAS underwent comprehensive ophthalmic evaluation at the National Institutes of Health from 2017 to 2020, including best-corrected visual acuity, slit-lamp biomicroscopy, optical biometry, dilated fundus examination, optical coherence tomography and colour fundus imaging. RESULTS: Mean age of the 57 WBS patients was 20.3 years (range 3-60 years). Best-corrected visual acuity ranged from 20/20 to 20/400 with mean spherical equivalent near plano OU. Twenty-four eyes (21.8%) had an axial length (AL) less than 20.5 mm and 38 eyes (34.5%) had an AL measuring 20.5-22.0 mm. Stellate iris and retinal arteriolar tortuosity were noted in 30 (52.6%) and 51 (89.5%) WBS patients, respectively. Novel retinal findings in WBS included small hypopigmented retinal deposits (OD 29/57, OS 27/57) and broad foveal pit contour (OD 44/55, OS 42/51). Of the five patients with SVAS, none had stellate iris or broad foveal pit contour while 2/5 had retinal arteriolar tortuosity. CONCLUSION: WBS is a complex multisystem genetic disorder with diverse ophthalmic findings that differ from those seen in isolated elastin mediated SVAS. These results suggest other genes within the WBS critical region, aside from ELN, may be involved in observed ocular phenotypes and perhaps broader ocular development. Furthermore, retinal arteriolar tortuosity may provide future insight into systemic vascular findings in WBS.


Subject(s)
Aortic Stenosis, Supravalvular , Williams Syndrome , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Elastin/genetics , Aortic Stenosis, Supravalvular/genetics , Phenotype , Tomography, Optical Coherence
18.
Ophthalmology ; 130(4): 423-432, 2023 04.
Article in English | MEDLINE | ID: mdl-36332842

ABSTRACT

PURPOSE: We aimed to characterize the ocular phenotype of patients with ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome and their response to therapy. DESIGN: Single-center observational case study. PARTICIPANTS: Eleven patients with a diagnosis of ROSAH syndrome and mutation in ALPK1 were included. METHODS: Patients with molecularly confirmed ROSAH syndrome underwent ophthalmic evaluation, including visual acuity testing, slit-lamp and dilated examinations, color fundus and autofluorescence imaging, fluorescein angiography, OCT, and electrophysiologic testing. MAIN OUTCOME MEASURES: Visual acuity, electrophysiology, fluorescein angiography, and OCT findings. RESULTS: Eleven individuals (6 female and 5 male patients) from 7 families ranging in age from 7.3 to 60.2 years at the time of the initial evaluation were included in this study. Seven patients were followed up for a mean of 2.6 years (range, 0.33-5.0 years). Best-corrected visual acuity at baseline ranged from 20/16 to no light perception. Variable signs or sequelae of intraocular inflammation were observed in 9 patients, including keratic precipitates, band keratopathy, trace to 2+ anterior chamber cells, cystoid macular edema, and retinal vasculitis on fluorescein angiography. Ten patients were observed to show optic disc elevation and demonstrated peripapillary thickening on OCT. Seven patients showed retinal degeneration consistent with a cone-rod dystrophy, with atrophy tending to involve the posterior pole and extending peripherally. One patient with normal electroretinography findings and visual evoked potential was found to have decreased Arden ratio on electro-oculography. CONCLUSIONS: Leveraging insights from the largest single-center ROSAH cohort described to date, this study identified 3 main factors as contributing to changes in visual function of patients with ROSAH syndrome: optic nerve involvement; intraocular inflammation, including cystoid macular edema; and retinal degeneration. More work is needed to determine how to arrest the progressive vision loss associated with ROSAH syndrome. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Subject(s)
Hereditary Autoinflammatory Diseases , Hypohidrosis , Macular Edema , Retinal Dystrophies , Male , Female , Humans , Macular Edema/diagnosis , NF-kappa B , Electroretinography , Splenomegaly , Evoked Potentials, Visual , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Optic Nerve , Edema , Inflammation , Headache , Fluorescein Angiography , Tomography, Optical Coherence
20.
Ophthalmol Sci ; 3(1): 100225, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36339947

ABSTRACT

Purpose: To describe the relationships between foveal structure and visual function in a cohort of individuals with foveal hypoplasia (FH) and to estimate FH grade and visual acuity using a deep learning classifier. Design: Retrospective cohort study and experimental study. Participants: A total of 201 patients with FH were evaluated at the National Eye Institute from 2004 to 2018. Methods: Structural components of foveal OCT scans and corresponding clinical data were analyzed to assess their contributions to visual acuity. To automate FH scoring and visual acuity correlations, we evaluated the following 3 inputs for training a neural network predictor: (1) OCT scans, (2) OCT scans and metadata, and (3) real OCT scans and fake OCT scans created from a generative adversarial network. Main Outcome Measures: The relationships between visual acuity outcomes and determinants, such as foveal morphology, nystagmus, and refractive error. Results: The mean subject age was 24.4 years (range, 1-73 years; standard deviation = 18.25 years) at the time of OCT imaging. The mean best-corrected visual acuity (n = 398 eyes) was equivalent to a logarithm of the minimal angle of resolution (LogMAR) value of 0.75 (Snellen 20/115). Spherical equivalent refractive error (SER) ranged from -20.25 diopters (D) to +13.63 D with a median of +0.50 D. The presence of nystagmus and a high-LogMAR value showed a statistically significant relationship (P < 0.0001). The participants whose SER values were farther from plano demonstrated higher LogMAR values (n = 382 eyes). The proportion of patients with nystagmus increased with a higher FH grade. Variability in SER with grade 4 (range, -20.25 D to +13.00 D) compared with grade 1 (range, -8.88 D to +8.50 D) was statistically significant (P < 0.0001). Our neural network predictors reliably estimated the FH grading and visual acuity (correlation to true value > 0.85 and > 0.70, respectively) for a test cohort of 37 individuals (98 OCT scans). Training the predictor on real OCT scans with metadata and fake OCT scans improved the accuracy over the model trained on real OCT scans alone. Conclusions: Nystagmus and foveal anatomy impact visual outcomes in patients with FH, and computational algorithms reliably estimate FH grading and visual acuity.

SELECTION OF CITATIONS
SEARCH DETAIL