Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131228, 2024 May.
Article in English | MEDLINE | ID: mdl-38554923

ABSTRACT

The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 µm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 µm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Free Radical Scavengers , Nanoparticles , Nitrates , Zinc Oxide , Cellulose/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Nanoparticles/chemistry , Catalysis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis , Zinc Compounds/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Microbial Sensitivity Tests
2.
Heliyon ; 8(12): e12207, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36578430

ABSTRACT

A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.

3.
Article in English | MEDLINE | ID: mdl-35990854

ABSTRACT

Medicinal plants have been treating various ailments and diseases since ancient times. Aquatic and semiaquatic medicinal plants play an essential role in human welfare to fulfill their daily needs. They have shown biological, pharmacological, nutraceutical, and commercial applications. This review aims to collect and update all recent information on ethnomedicinal, phytochemistry, pharmacological activities, and nanoparticle synthesis and their uses in aquatic and semiaquatic medicinal plants. Original research papers, review papers, short communications, and book chapters on aquatic and semiaquatic plants have been retrieved from PubMed, Web of Science, Scopus, and Google Scholar. Keywords, ethnomedicinal studies, phytochemistry, pharmacological activities, and nanoparticle synthesis from aquatic and semiaquatic medicinal plants are used for the search. Different aquatic and semiaquatic medicinal plants belonging to the families Acanthaceae, Alismataceae, Amaranthaceae, Apiaceae, Araceae, Asteraceae, Boraginaceae, Ceratophyllaceae, Cyperaceae, Fabaceae, Hydrocharitaceae, Lythraceae, Marsileaceae, Menyanthaceae, Nelumbonaceae, Nymphaeaceae, Onagraceae, Plantaginaceae, Poaceae, Polygonaceae, Pontederiaceae, Primulaceae, Scrophulariaceae, and Zingiberaceae have been studied. They are rich in alkaloids, flavonoids, terpenoids, phenolics, saponins, tannins, dietary fiber, glycosidic derivatives, carbohydrates, and proteins. These phytochemicals have been used for their antimicrobial, antioxidant, hepatoprotective, sedative, anticonvulsant, cytotoxic, antiparasitic, and antidiabetic activities. Besides this, various parts of the plants are used as dietary supplements and green nanoparticle synthesis. These plants are also known for their commercial value and are used as an ingredient in some pharmaceutical industries.

4.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35215224

ABSTRACT

The combination of green-nanotechnology and biology may contribute to anticancer therapy. In this regard, using gold nanoparticles (GNPs) as therapeutic molecules can be a promising strategy. Herein, we proposed a novel biocompatible nanogold constructed by simply microwave-heating (MWI) Au3+ ions and kenaf seed (KS) extract within a minute. The phytoconstituents of KS extract have been utilized for safe synthesis of gold nanoparticles (KS@GNPs). The biogenic KS@GNPs were characterized by UV-vis Spectra, TEM, HR-TEM, XRD, FTIR, DLS, EDX, and SEAD techniques. The legitimacy and toxicity concern of KS@GNPs were tested against RAW 264.7 and NIH3T3 cell lines. The anticancer efficacy was verified using LN-229 cells. The pathways of KS@GNPs synthesis were optimized by varying the KS concentration (λmax 528 nm), gold salt amount (λmax 524 nm), and MWI times (λmax 522 nm). TEM displayed spherical shape and narrow size distribution (5-19.5 nm) of KS@GNPs, whereas DLS recorded Z-average size of 121.7 d·nm with a zeta potential of -33.7 mV. XRD and SAED ring patterns confirmed the high crystallinity and crystalline face centered cubic structure of gold. FTIR explored OH functional group involved in Au3+ ions reduction followed by GNPs stabilization. KS@GNPs exposure to RAW 264.7 and NIH3T3 cell lines did not induce toxicity while dose-dependent overt cell toxicity and reduced cell viability (26.6%) was observed in LN-229 cells. Moreover, the IC50 (18.79 µg/mL) treatment to cancer cell triggered cellular damages, excessive ROS generation, and apoptosis. Overall, this research exploits a sustainable method of KS@GNPs synthesis and their anticancer therapy.

5.
Chemosphere ; 295: 133798, 2022 May.
Article in English | MEDLINE | ID: mdl-35122813

ABSTRACT

Plant diseases caused by pathogenic entities pose severe issues to global food security. Effective sensory applications and tools for the effective determination of plant diseases become crucial to the assurance of food supply and agricultural sustainability. Antibody-mediated molecular assays and nucleic acid are gold-standard approaches for plant disease diagnosis, but the evaluating methodologies are liable, complex, and laborious. With the rise in global food demand, escalating the food production in threats of diverse pathogen ranges, and climate change is a major challenge. Engineered nanoparticles (NPs) have been inserted into conventional laboratory sequence technologies or molecular assays that provide a remarkable increment in selectivity and sensitivity. In the present scenario, they are useful in plant disease management as well as in plant health monitoring. The use of NPs could sustainably mitigate numerous food security issues and or threats in disease management by decreasing the risk of chemical inputs and alleviating supra detection of pathogens. Overall, this review paper discusses the role of NPs in plant diseases management, available commercial products. Additionally, the future directions and their regulatory laws in the usage of the nano-diagnostic approach for plant health monitoring have been explained.


Subject(s)
Nanoparticles , Plants , Agriculture , Climate Change , Food Supply , Plant Diseases/prevention & control
6.
Crit Rev Biotechnol ; 42(7): 973-990, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34521281

ABSTRACT

Although several metal ions/metal nanoparticles (NPs) are toxic to both plants and animals, some of them are used as nutrients and growth promoters. Plants exposed to silver nanoparticles (Ag-NPs) have shown both beneficial and harmful effects. All concentrations of Ag-NPs are not effective for a given plant because any excess can block the passage of essential nutrients. Regulated treatment of plants by Ag-NPs may enhance their overall growth and development. It has been noticed that Ag-NPs decrease the mass of edible plants (Cucurbita pepo, Allium cepa, cabbage, and lettuce) and vegetables, but they also induce the germination of seeds in many cases. NPs interact with proteins, enzymes, and carbohydrates influencing the total biomass, root, and shoot growth of plants. Also, Ag-NPs act as an ethylene inhibitor and activate the antioxidants in onions. Their substantial quantity becomes deposited in onion leaves and bulbs. Size and concentration are the two major factors responsible for the increase/decrease of plant growth and biomass. Plants make adaptations to reduce the toxicity caused by Ag-NPs. In some cases, Ag-NPs induce root elongation and increase chlorophyll, carbohydrate, proteins, rate of photosynthesis and inhibit the biosynthesis of ethylene. This review article provides a comprehensive overview of both the beneficial and adverse effects of Ag-NPs on germination, growth, development, physiological, and biochemical characteristics of a wide range of edible and crop plants. We have also critically discussed: the chemistry, toxicity, uptake, translocation, and accumulation of Ag-NPs in plant systems.


Subject(s)
Metal Nanoparticles , Nanoparticles , Carbohydrates , Chlorophyll , Ethylenes , Ions , Metal Nanoparticles/toxicity , Silver/metabolism , Silver/toxicity
7.
Nanoscale Res Lett ; 16(1): 156, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34664133

ABSTRACT

Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.

8.
Nanoscale Res Lett ; 16(1): 136, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34460019

ABSTRACT

Previous decades have witnessed a lot of challenges that have provoked a dire need of ensuring global food security. The process of augmenting food production has made the agricultural ecosystems to face a lot of challenges like the persistence of residual particles of different pesticides, accretion of heavy metals, and contamination with toxic elemental particles which have negatively influenced the agricultural environment. The entry of such toxic elements into the human body via agricultural products engenders numerous health effects such as nerve and bone marrow disorders, metabolic disorders, infertility, disruption of biological functions at the cellular level, and respiratory and immunological diseases. The exigency for monitoring the agroecosystems can be appreciated by contemplating the reported 220,000 annual deaths due to toxic effects of residual pesticidal particles. The present practices employed for monitoring agroecosystems rely on techniques like gas chromatography, high-performance liquid chromatography, mass spectroscopy, etc. which have multiple constraints, being expensive, tedious with cumbersome protocol, demanding sophisticated appliances along with skilled personnel. The past couple of decades have witnessed a great expansion of the science of nanotechnology and this development has largely facilitated the development of modest, quick, and economically viable bio and nanosensors for detecting different entities contaminating the natural agroecosystems with an advantage of being innocuous to human health. The growth of nanotechnology has offered rapid development of bio and nanosensors for the detection of several composites which range from several metal ions, proteins, pesticides, to the detection of complete microorganisms. Therefore, the present review focuses on different bio and nanosensors employed for monitoring agricultural ecosystems and also trying to highlight the factor affecting their implementation from proof-of-concept to the commercialization stage.

9.
J Nanobiotechnology ; 19(1): 256, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446005

ABSTRACT

Due to the global rise of the human population, one of the top-most challenges for poor and developing nations is to use the food produces safely and sustainably. In this regard, the storage of surplus food (and derived products) without loss of freshness, nutrient stability, shelf life, and their parallel efficient utilization will surely boost the food production sector. One of the best technologies that have emerged within the last twenty years with applications in the packaging of food and industrial materials is the use of green mode-based synthesized nanoparticles (NPs). These NPs are stable, advantageous as well as eco-friendly. Over the several years, numerous publications have confirmed that these NPs exert antibacterial, antioxidant, and antifungal activity against a plethora of pathogens. The storage in metal-based NPs (M-NPs) does not hamper the food properties and packaging efficiency. Additionally, these M-NPs help in the improvement of properties including freshness indicators, mechanical properties, antibacterial and water vapor permeability during food packaging. As a result, the nano-technological application facilitates a simple, alternate, interactive as well as reliable technology. It even provides positive feedback to food industries and packaging markets. Taken together, the current review paper is an attempt to highlight the M-NPs for prominent applications of antimicrobial properties, nanosensors, and food packaging of food items. Additionally, some comparative reports associated with M-NPs mechanism of action, risks, toxicity, and overall future perspectives have also been made.


Subject(s)
Food Packaging/methods , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants , Food Handling , Humans , Nanocomposites , Nanotechnology , Permeability
10.
Saudi J Biol Sci ; 27(10): 2551-2562, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32994711

ABSTRACT

Nanotechnology is evolving as a significant discipline of research with various applications. It includes the materials and their applications having one dimension in the range of 1-100 nm. Many chemical and physical protocol have been utilized for the nanoparticles (NPs) fabrication. These protocols are costly, hazardous and consumes high energy. Thus, researchers are inclined towards biological synthesis of NPs using plant and or herbal extract as these methods are simple, sustainable, ecofriendly and cost-effective. Flower is an important part of plants, and contained several phytochemicals such as flavonoids, terpenoids, coumarins, sterol and xanthones which acts as an important precursor for NPs synthesis. These compounds acted as reducing as well as stablishing agent during fabrication processes. They have been thoroughly characterized by various techniques. The fabricated NPs have shown potential antimicrobial activity against bacterial and fungal infections. They have been also used as potential therapeutic agent for human breast cancer, gastric adenocarcinoma cell, colorectal adenocarcinoma cell and pancreas ductal adenocarcinoma cells. Overall, the aim of this review article to facilitates the recent understanding of flower-mediated NPs fabrication (a sustainable and ecofriendly resource), their application in different disciplines and challenges.

11.
Biomater Res ; 24: 11, 2020.
Article in English | MEDLINE | ID: mdl-32514371

ABSTRACT

Since green mode of nanoparticles (NPs) synthesis is simple, advantageous and environment friendly relative to chemical and physical procedures, various plant species have been used to fabricate copper and copper oxide nanoparticles (Cu/CuO-NPs) owing to the presence of phytochemicals which often act as capping as well as stabilizing agent. These Cu/CuO-NPs are highly stable and used in the degradation of organic dyes like methylene blue and reduction of organic compounds such as phenols. They are also used as antibacterial, antioxidant and antifungal agent due to their cytotoxicity. They are also examined for agricultural crops growth and productivity. Cu-NPs increased the root and shoot growth of mung bean. In wheat plants, these particles reduced shoot growth; and enhanced the grain yield and stress tolerance through starch degradation. Similarly, CuO-NPs treated seedlings have shown reduced chlorophyll, carotenoid and sugar content, whereas proline and anthocyanins were increased in Brassica rapa seedlings. Overall, this review presents the recent understanding of plant-mediated Cu and CuO-NPs fabrication and their application in biomedicine, environmental remediation and agricultural practices. A comparison of the traditional/conventional method of fabrication of NPs with those of green protocols has also been made. Some misconception of copper chemistry has also been critically discussed in terms of oxidation and reduction reactions.

12.
Virusdisease ; 29(4): 419-433, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30539044

ABSTRACT

Dementia is known as loss of cellular communications in the brain at a region caused by multi-factorial diseases and pathogenic infections. Approximately eighty percent reported cases of Alzheimer's disease are followed by vascular dementia. The common symptoms of dementia include memory loss, concentration problems, thinking, and language solving situations. Dementia is a multifactorial disease but based on latest research; various reports have been published describing the linkage and role of viruses, prions and miRNAs in neurodegeneration and neurodegenerative disorders resulting into dementia and due to this we selected to review and provide latest information related to dementia. MiRNAs are small non-coding RNAs carrying genetic regulatory information contributing to neurological disorders among human and animals. A prion is an infectious agent made of protein material. Recently, it has been reported that prions play a significant role in signaling processes, resulting in amyloidogenesis and neurological disorders. Viruses attack human immune system and central nervous system and affect classical pathways of neurodegenerative diseases. Comprehensive understandings of the expression profiles and activities of these miRNAs, Prions, Viruses will illuminate their roles as potential therapeutic targets in neurodegeneration and may lead to the discovery of breakthrough treatment strategies for neurodegenerative disorders and dementia. The provided information will further be significant not only in neuro-scientific research, but also in designing and development of management strategies for dementia.

13.
Biomater Res ; 22: 23, 2018.
Article in English | MEDLINE | ID: mdl-30258651

ABSTRACT

BACKGROUND: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. RESULTS: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. CONCLUSION: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

14.
Nanoscale Res Lett ; 13(1): 231, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30097809

ABSTRACT

Nanomaterials (NMs) are receiving remarkable attention due to their unique properties and structure. They vary from atoms and molecules along with those of bulk materials. They can be engineered to act as drug delivery vehicles to cross blood-brain barriers (BBBs) and utilized with better efficacy and safety to deliver specific molecules into targeted cells as compared to conventional system for neurological disorders. Depending on their properties, various metal chelators, gold nanoparticles (NPs), micelles, quantum dots, polymeric NPs, liposomes, solid lipid NPs, microparticles, carbon nanotubes, and fullerenes have been utilized for various purposes including the improvement of drug delivery system, treatment response assessment, diagnosis at early stage, and management of neurological disorder by using neuro-engineering. BBB regulates micro- and macromolecule penetration/movement, thus protecting it from many kinds of illness. This phenomenon also prevents drug delivery for the neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, and primary brain tumors. For some neurological disorders (AD and PD), the environmental pollution was considered as a major cause, as observed that metal and/or metal oxide from different sources are inhaled and get deposited in the lungs/brain. Old age, obesity, diabetes, and cardiovascular disease are other factors for rapid deterioration of human health and onset of AD. In addition, gene mutations have also been examined to cause the early onset familial forms of AD. AD leads to cognitive impairment and plaque deposits in the brain leading to neuronal cell death. Based on these facts and considerations, this review elucidates the importance of frequently used metal chelators, NMs and/or NPs. The present review also discusses the current status and future challenges in terms of their application in drug delivery for neurological disease management.

15.
Nanoscale Res Lett ; 13(1): 141, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29740719

ABSTRACT

Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

16.
J Nanobiotechnology ; 16(1): 14, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29452593

ABSTRACT

Use of silver and silver salts is as old as human civilization but the fabrication of silver nanoparticles (Ag NPs) has only recently been recognized. They have been specifically used in agriculture and medicine as antibacterial, antifungal and antioxidants. It has been demonstrated that Ag NPs arrest the growth and multiplication of many bacteria such as Bacillus cereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Vibrio parahaemolyticus and fungus Candida albicans by binding Ag/Ag+ with the biomolecules present in the microbial cells. It has been suggested that Ag NPs produce reactive oxygen species and free radicals which cause apoptosis leading to cell death preventing their replication. Since Ag NPs are smaller than the microorganisms, they diffuse into cell and rupture the cell wall which has been shown from SEM and TEM images of the suspension containing nanoparticles and pathogens. It has also been shown that smaller nanoparticles are more toxic than the bigger ones. Ag NPs are also used in packaging to prevent damage of food products by pathogens. The toxicity of Ag NPs is dependent on the size, concentration, pH of the medium and exposure time to pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Fungi/drug effects , Metal Nanoparticles , Silver/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Bacteria/cytology , Bacteria/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Fungi/cytology , Fungi/metabolism , Green Chemistry Technology/methods , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Nanotechnology/methods , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/therapeutic use
17.
Curr Drug Metab ; 18(9): 831-841, 2017.
Article in English | MEDLINE | ID: mdl-28699508

ABSTRACT

BACKGROUND: Growing world population and continuous disease emergence have invited the development of more efficient new vaccines against a range of diseases. Conventional vaccines are being wildly used in the world but their production requires higher cost, more time and better infrastructure. Thus, the idea of plant-based edible vaccine technology has emerged and showed promising results with strong and effective protection against many diseases. Plants have been utilized since more than two decades as pharmaceuticals against many diseases. METHODS: Plant-based technology has great potential to express genes and produce clinically important compounds in the desired tissue. Plant biotechnology has played important role in the production of pharmaceutical compounds like vaccines, antibodies, antigens, sub-units, growth hormones and enzymes by utilizing genetic modification. It has also been opened a new approach for developing an edible vaccine as an oral delivery. RESULTS: Edible vaccines have been shown to induce both mucosal as well as systemic immunity. Currently, many pharmaceuticals proteins as an edible vaccine have been developed in different plant expression systems and evaluated against various life-threatening diseases and some of them have reached advanced phase of the clinical trial and exhibited promising results. CONCLUSION: In this review, we have discussed about the molecular pharming, edible vaccines, plant base technology and current status of developed edible vaccines in the different plant tissue expression system, mechanism of action and clinical applications with clinical trials stage, significance, requirements, advantage and disadvantage of edible vaccines.


Subject(s)
Plants, Genetically Modified/metabolism , Vaccines, Edible , Animals , Humans , Molecular Farming , Plants, Genetically Modified/genetics , Vaccines, Edible/administration & dosage , Vaccines, Edible/metabolism
18.
J Trace Elem Med Biol ; 40: 10-23, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28159216

ABSTRACT

For biosynthesis of gold nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, terpenoids, alcohols, sugars and proteins which act as reducing agents to produce nanoparticles. They also act as capping agent and stabilizer for them. They are used in medicine, agriculture and many other technologies. The attention is therefore focussed on all plant species which have either aroma or colour in their leaves, flowers or roots for the synthesis of nanoparticles because they all contain such chemicals which reduce the metal ions to metal nanoparticles. The size and morphology of gold nanoparticles is dependent on the biogenic-synthetic route, incubation time, temperature, concentration and pH of the solution. In this review, we have discussed the latest developments for the fabrication of gold nanoparticles from herbal extract, their characterization by UV-vis., Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, atomic force microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering and Zeta Potential techniques. Their application in drug delivery, cancer treatment, catalysis and as antimicrobial agent has also been discussed.


Subject(s)
Gold/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Plants/metabolism , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Catalysis , Drug Delivery Systems , Gold/chemistry , Gold/pharmacology , Gold/therapeutic use , Humans , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plants/chemistry
19.
Nanoscale Res Lett ; 12(1): 92, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28168616

ABSTRACT

All metal oxide nanoparticles influence the growth and development of plants. They generally enhance or reduce seed germination, shoot/root growth, biomass production and physiological and biochemical activities. Some plant species have not shown any physiological change, although significant variations in antioxidant enzyme activity and upregulation of heat shock protein have been observed. Plants have evolved antioxidant defence mechanism which involves enzymatic as well as non-enzymatic components to prevent oxidative damage and enhance plant resistance to metal oxide toxicity. The exact mechanism of plant defence against the toxicity of nanomaterials has not been fully explored. The absorption and translocation of metal oxide nanoparticles in different parts of the plant depend on their bioavailability, concentration, solubility and exposure time. Further, these nanoparticles may reach other organisms, animals and humans through food chain which may alter the entire biodiversity. This review attempts to summarize the plant response to a number of metal oxide nanoparticles and their translocation/distribution in root/shoot. The toxicity of metal oxide nanoparticles has also been considered to see if they affect the production of seeds, fruits and the plant biomass as a whole.

20.
Nanoscale Res Lett ; 11(1): 482, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27807824

ABSTRACT

Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...