Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Genet Med ; 26(7): 101143, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38641995

ABSTRACT

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.

2.
Mol Biol Rep ; 51(1): 104, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224417

ABSTRACT

BACKGROUND: Autosomal Recessive Primary Microcephaly (MCPH) is a rare, neurodevelopmental disorder associated with mild to severe mental retardation. It is characterized by reduced cerebral cortex that ultimately leads to reduction in skull size less than - 3 S.D below the mean for normal individuals having same age and sex. Till date, 30 known loci have been reported for MCPH. METHODS: In the present study, Sanger sequencing was performed followed by linkage analysis to validate the mutation in ASPM gene of the consanguineous Pakistani clans. Bioinformatics tools were also used to confirm the pathogenicity of the diseased variant in the gene. MRI scan was used to compare the brain structure of both the affected individuals (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). RESULTS: Our study described a consanguineous family with two patients with a known ASPM (MCPH5) variant c.8508_8509delGA causing a frameshift mutation in exon 18 which located in calmodulin-binding IQ domain of the ASPM protein. The salient feature of this study is that a single variant led to significantly distinct changes in the architecture of brain of both siblings which is further confirmed by MRI results. The computation analysis showed that the change in the conservation of this residue cause this variant highly pathogenic. Carrier screening and genetic counselling were also remarkable features of this study (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). CONCLUSION: This study explores the extraordinary influence of a single ASPM variant on divergent brain structure in consanguineous siblings and enable us to reduce the incidence of further microcephalic cases in this Pakistani family (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023).


Subject(s)
Brain , Siblings , Humans , Consanguinity , Pakistan , Brain/diagnostic imaging , Nerve Tissue Proteins
3.
Microbiol Res ; 275: 127451, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478540

ABSTRACT

Symbiotic interaction among legume and rhizobia is a complex phenomenon which results in the formation of nitrogen-fixing nodules. Mung bean is promiscuous host however expression profile of this important legume plant in response to rhizobial infection was particularly lacking and urgently needed. We have demonstrated the pattern of gene expression of mung bean roots inoculated with two symbionts Bradyrhizobium yuanmingense Vr50 and Sinorhizobium (Ensifer) aridi Vr33 and non-inoculated control (CK). The RNA-Seq data analyzed at two growth stages i.e., 1-3 h and 10-16 days post inoculation revealed significantly higher number of differentially expressed genes (DEGs) at nodulation stage. The DEGs encoding receptor kinases identified at early stage might be involved in perception of Nod factors produced by different rhizobia. At nodulation stage important genes involved in plant hormone signal transduction, nitrogen and sulfur metabolism were identified. KEGG pathway enrichment analysis showed that metabolic pathways were most prominent in both groups (Group 1: Vr33 vs CK; Group 2: Vr50 vs CK), followed by biosynthesis of secondary metabolites, plant hormone signal transduction and biosynthesis of amino acids. Furthermore, DEGs involved in cell communication and plant hormone signal transduction were found to be different among two symbiotic systems while DEGs involved in carbon, nitrogen and sulfur metabolism were similar but their expression varied in response to two rhizobial strains. This study provides the first insight into the mechanisms underlying interactions of mung bean host with two taxonomically different symbionts (Bradyrhizobium and Sinorhizobium) and the candidate genes for better understanding the mechanisms of symbiotic host-specificity.


Subject(s)
Bradyrhizobium , Fabaceae , Rhizobium , Sinorhizobium , Vigna , Vigna/genetics , Rhizobium/genetics , Plant Growth Regulators/metabolism , RNA-Seq , Plant Roots , Symbiosis/genetics , Sinorhizobium/genetics , Nitrogen/metabolism , Gene Expression , Sulfur/metabolism , Bradyrhizobium/genetics
4.
J Hum Genet ; 68(7): 469-475, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36864288

ABSTRACT

Primary microcephaly is a rare, congenital, and genetically heterogeneous disorder in which occipitofrontal head circumference is reduced by a minimum of three standard deviations (SDs) from average because of the defect in fetal brain development. OBJECTIVE: Mapping of RBBP8 gene mutation that produce autosomal recessive primary microcephaly. Insilco RBBP8 protein models prediction and analysis. METHODS: Consanguineous Pakistani family affected with non-syndromic primary microcephaly was mapped a biallelic sequence variant (c.1807_1808delAT) in the RBBP8 gene via whole-exome sequencing. The deleted variant in the RBBP8 gene in affected siblings (V:4, V:6) of primary microcephaly was confirmed by sanger sequencing. RESULTS: Identified variant c.1807_1808delAT that truncated the protein translation p. Ile603Lysfs*7 and impaired the functioning of RBBP8 protein. This sequence variant was only reported previously in Atypical Seckel syndrome and Jawad syndrome, while we mapped it in the non-syndromic primary microcephaly family. We predicted 3D protein models by using Insilco tools like I TASSER, Swiss model, and phyre2 of wild RBBP8 protein of 897 amino acids and 608 amino acids of the mutant protein. These models were validated through the online SAVES server and Ramachandran plot and refined by using the Galaxy WEB server. A predicted and refined wild protein 3D model was deposited with accession number PM0083523 in Protein Model Database. A normal mode-based geometric simulation approach was used through the NMSim program, to find out the structural diversity of wild and mutant proteins which were evaluated by RMSD and RMSF. Higher RMSD and RMSF in mutant protein reduced the stability of the protein. CONCLUSION: The high possibility of this variant results in nonsense-mediated decay of mRNA, leading to the loss of protein functioning which causes primary microcephaly.


Subject(s)
Microcephaly , Humans , Microcephaly/genetics , Pedigree , Mutation , Mutant Proteins , Amino Acids/genetics , Endodeoxyribonucleases/genetics
5.
Cells ; 12(4)2023 02 16.
Article in English | MEDLINE | ID: mdl-36831309

ABSTRACT

Congenital microcephaly (CM) exhibits broad clinical and genetic heterogeneity and is thus categorized into several subtypes. However, the recent bloom of disease-gene discoveries has revealed more overlaps than differences in the underlying genetic architecture for these clinical sub-categories, complicating the differential diagnosis. Moreover, the mechanism of the paradigm shift from a brain-restricted to a multi-organ phenotype is only vaguely understood. This review article highlights the critical factors considered while defining CM subtypes. It also presents possible arguments on long-standing questions of the brain-specific nature of CM caused by a dysfunction of the ubiquitously expressed proteins. We argue that brain-specific splicing events and organ-restricted protein expression may contribute in part to disparate clinical manifestations. We also highlight the role of genetic modifiers and de novo variants in the multi-organ phenotype of CM and emphasize their consideration in molecular characterization. This review thus attempts to expand our understanding of the phenotypic and etiological variability in CM and invites the development of more comprehensive guidelines.


Subject(s)
Microcephaly , Humans , Microcephaly/genetics , Brain , Phenotype , Genetic Heterogeneity
6.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35571680

ABSTRACT

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

7.
Genet Med ; 24(8): 1708-1721, 2022 08.
Article in English | MEDLINE | ID: mdl-35583550

ABSTRACT

PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.


Subject(s)
Ectodermal Dysplasia , Lymphoid Enhancer-Binding Factor 1/genetics , Wnt Signaling Pathway , Consanguinity , Ectodermal Dysplasia/genetics , Humans , Limb Deformities, Congenital , Lymphoid Enhancer-Binding Factor 1/metabolism , Syndrome , beta Catenin/genetics , beta Catenin/metabolism
8.
Am J Med Genet A ; 188(4): 1251-1258, 2022 04.
Article in English | MEDLINE | ID: mdl-34913263

ABSTRACT

Essential tremor (ET) is a neurological disorder characterized by bilateral and symmetric postural, isometric, and kinetic tremors of forelimbs produced during voluntary movements. To date, only a single SCN4A variant has been suggested to cause ET. In continuation of the previous report on the association between SCN4A and ET in a family from Spain, we validated the pathogenicity of a novel SCN4A variant and its involvement in ET in a second family affected by this disease. We recruited a Kurdish family with four affected members manifesting congenital tremor. Using whole-exome sequencing, we identified a novel missense variant in SCN4A, NM_000334.4:c.4679C>T; p.(Pro1560Leu), thus corroborating SCN4A's role in ET. The residue is highly conserved across vertebrates and the substitution is predicted to be pathogenic by various in silico tools. Western blotting and immunocytochemistry performed in cells derived from one of the patients showed reduced immunoreactivity of SCN4A as compared to control cells. The study provides supportive evidence for the role of SCN4A in the etiology of ET and expands the phenotypic spectrum of channelopathies to this neurological disorder.


Subject(s)
Channelopathies , Essential Tremor , Animals , Consanguinity , Essential Tremor/genetics , Humans , Mutation, Missense/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Pedigree
9.
Genes (Basel) ; 14(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36672789

ABSTRACT

Intellectual disability (ID) is a condition of significant limitation of cognitive functioning and adaptive behavior, with 50% of etiology attributed to genetic predisposition. We recruited two consanguineous Pakistani families manifesting severe ID and developmental delay. The probands were subjected to whole exome sequencing (WES) and variants were further prioritized based on population frequency, predicted pathogenicity and functional relevance. The WES data analysis identified homozygous pathogenic variants in genes MBOAT7 and TRAPPC9. The pathogenicity of the variants was supported by co-segregation analysis and in silico tool. The findings of this study expand mutation spectrum and provide additional evidence to the role of MBOAT7 and TRAPPC9 in causation of ID.


Subject(s)
Intellectual Disability , Humans , Consanguinity , Intellectual Disability/genetics , Exome Sequencing , Pakistan , Pedigree
10.
Genes (Basel) ; 12(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34680889

ABSTRACT

Primary microcephaly (MCPH) is a prenatal condition of small brain size with a varying degree of intellectual disability. It is a heterogeneous genetic disorder with 28 associated genes reported so far. Most of these genes encode centrosomal proteins. Recently, AKNA was recognized as a novel centrosomal protein that regulates neurogenesis via microtubule organization, making AKNA a likely candidate gene for MCPH. Using linkage analysis and whole-exome sequencing, we found a frameshift variant in exon 12 of AKNA (NM_030767.4: c.2737delG) that cosegregates with microcephaly, mild intellectual disability and speech impairment in a consanguineous family from Pakistan. This variant is predicted to result in a protein with a truncated C-terminus (p.(Glu913Argfs*42)), which has been shown to be indispensable to AKNA's localization to the centrosome and a normal brain development. Moreover, the amino acid sequence is altered from the beginning of the second of the two PEST domains, which are rich in proline (P), glutamic acid (E), serine (S), and threonine (T) and common to rapidly degraded proteins. An impaired function of the PEST domains may affect the intracellular half-life of the protein. Our genetic findings compellingly substantiate the predicted candidacy, based on its newly ascribed functional features, of the multifaceted protein AKNA for association with MCPH.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Microcephaly/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Adolescent , Centrosome/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Child , Female , Frameshift Mutation/genetics , Genetic Linkage/genetics , Haplotypes/genetics , Homozygote , Humans , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Male , Microcephaly/epidemiology , Microcephaly/pathology , Pakistan/epidemiology , Pedigree , Exome Sequencing
11.
Genes (Basel) ; 12(9)2021 08 24.
Article in English | MEDLINE | ID: mdl-34573277

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurological and developmental disabilities characterised by clinical and genetic heterogeneity. The current study aimed to expand ASD genotyping by investigating potential associations with SYNE2 mutations. Specifically, the disease-causing variants of SYNE2 in 410 trios manifesting neurodevelopmental disorders using whole-exome sequencing were explored. The consequences of the identified variants were studied at the transcript level using quantitative polymerase chain reaction (qPCR). For validation, immunofluorescence and immunoblotting were performed to analyse mutational effects at the protein level. The compound heterozygous variants of SYNE2 (NM_182914.3:c.2483T>G; p.(Val828Gly) and NM_182914.3:c.2362G>A; p.(Glu788Lys)) were identified in a 4.5-year-old male, clinically diagnosed with autism spectrum disorder, developmental delay and intellectual disability. Both variants reside within the nesprin-2 giant spectrin repeat (SR5) domain and are predicted to be highly damaging using in silico tools. Specifically, a significant reduction of nesprin-2 giant protein levels is revealed in patient cells. SYNE2 transcription and the nuclear envelope localisation of the mutant proteins was however unaffected as compared to parental control cells. Collectively, these data provide novel insights into the cardinal role of the nesprin-2 giant in neurodevelopment and suggest that the biallelic hypomorphic SYNE2 mutations may be a new cause of intellectual disability and ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Cells, Cultured , Child , Heterozygote , Humans , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Mutation, Missense , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Domains , Protein Transport
12.
Clin Genet ; 100(4): 486-488, 2021 10.
Article in English | MEDLINE | ID: mdl-34270086

ABSTRACT

Jawad syndrome is a multiple congenital anomaly and intellectual disability syndrome with mutation in RBBP8 reported only in two families. Here, we report on two new families from Pakistan and identified a previously reported variant in RBBP8, NM_002894.3:c.1808-1809delTA. We could show that this mutation impairs splicing resulting in two different abnormal transcripts. Finally, we could verify a shared haplotype among all four families and estimate the founder event to have occurred some 24 generations ago.


Subject(s)
Endodeoxyribonucleases/genetics , Fingers/abnormalities , Founder Effect , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , RNA Splicing , Toes/abnormalities , Facies , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Pakistan , Pedigree , Phenotype , Sequence Analysis, DNA , Exome Sequencing
13.
Genes (Basel) ; 12(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34068194

ABSTRACT

Congenital microcephaly is the clinical presentation of significantly reduced head circumference at birth. It manifests as both non-syndromic-microcephaly primary hereditary (MCPH)-and syndromic forms and shows considerable inter- and intrafamilial variability. It has been hypothesized that additional genetic variants may be responsible for this variability, but data are sparse. We have conducted deep phenotyping and genotyping of five Pakistani multiplex families with either MCPH (n = 3) or Seckel syndrome (n = 2). In addition to homozygous causal variants in ASPM or CENPJ, we discovered additional heterozygous modifier variants in WDR62, CEP63, RAD50 and PCNT-genes already known to be associated with neurological disorders. MCPH patients carrying an additional heterozygous modifier variant showed more severe phenotypic features. Likewise, the phenotype of Seckel syndrome caused by a novel CENPJ variant was aggravated to microcephalic osteodysplastic primordial dwarfism type II (MOPDII) in conjunction with an additional PCNT variant. We show that the CENPJ missense variant impairs splicing and decreases protein expression. We also observed centrosome amplification errors in patient cells, which were twofold higher in MOPDII as compared to Seckel cells. Taken together, these observations advocate for consideration of additional variants in related genes for their role in modifying the expressivity of the phenotype and need to be considered in genetic counseling and risk assessment.


Subject(s)
Genes, Modifier , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Acid Anhydride Hydrolases/genetics , Adult , Antigens/genetics , Cell Cycle Proteins/genetics , Child , DNA-Binding Proteins/genetics , Female , Heterozygote , Humans , Male , Microcephaly/pathology , Microtubule-Associated Proteins/metabolism , Mutation , Pedigree , Phenotype
14.
Mol Genet Genomic Med ; 8(9): e1408, 2020 09.
Article in English | MEDLINE | ID: mdl-32677750

ABSTRACT

BACKGROUND: Primary microcephaly (MCPH) is a congenital neurodevelopmental disorder manifesting as small brain and intellectual disability. It underlies isolated reduction of the cerebral cortex that is reminiscent of early hominids which makes it suitable model disease to study the hominin-specific volumetric expansion of brain. Mutations in 25 genes have been reported to cause this disorder. Although majority of these genes were discovered in the Pakistani population, still a significant proportion of these families remains uninvestigated. METHODS: We studied a cohort of 32 MCPH families from different regions of Pakistan. For disease gene identification, genome-wide linkage analysis, Sanger sequencing, gene panel, and whole-exome sequencing were performed. RESULTS: By employing these techniques individually or in combination, we were able to discern relevant disease-causing DNA variants. Collectively, 15 novel mutations were observed in five different MCPH genes; ASPM (10), WDR62 (1), CDK5RAP2 (1), STIL (2), and CEP135 (1). In addition, 16 known mutations were also verified. We reviewed the literature and documented the published mutations in six MCPH genes. Intriguingly, our cohort also revealed a recurrent mutation, c.7782_7783delGA;p.(Lys2595Serfs*6), of ASPM reported worldwide. Drawing from this collective data, we propose two founder mutations, ASPM:c.9557C>G;p.(Ser3186*) and CENPJ:c.18delC;p.(Ser7Profs*2), in the Pakistani population. CONCLUSIONS: We discovered novel DNA variants, impairing the function of genes indispensable to build a proper functioning brain. Our study expands the mutational spectra of known MCPH genes and also provides supporting evidence to the pathogenicity of previously reported mutations. These novel DNA variants will be helpful for the clinicians and geneticists for establishing reliable diagnostic strategies for MCPH families.


Subject(s)
Genetic Loci , Microcephaly/genetics , Mutation , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Consanguinity , Female , Founder Effect , Gene Frequency , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Pedigree
15.
J Transl Med ; 17(1): 205, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217010

ABSTRACT

BACKGROUND: In our recent clinical trial, increased peripheral concentrations of pro-inflammatory molecular mediators were determined in complex regional pain syndrome (CRPS) patients. After 3 months adjunctive unilateral, selective L4 dorsal root ganglion stimulation (L4-DRGSTIM), significantly decreased serum IL-10 and increased saliva oxytocin levels were assessed along with an improved pain and functional state. The current study extended molecular profiling towards gene expression analysis of genes known to be involved in the gonadotropin releasing hormone receptor and neuroinflammatory (cytokines/chemokines) signaling pathways. METHODS: Blood samples were collected from 12 CRPS patients for whole-transcriptome profiling in order to assay 18,845 inflammation-associated genes from frozen blood at baseline and after 3 months L4-DRGSTIM using PANTHER™ pathway enrichment analysis tool. RESULTS: Pathway enrichment analyses tools (GOrilla™ and PANTHER™) showed predominant involvement of inflammation mediated by chemokines/cytokines and gonadotropin releasing hormone receptor pathways. Further, screening of differentially regulated genes showed changes in innate immune response related genes. Transcriptomic analysis showed that 21 genes (predominantly immunoinflammatory) were significantly changed after L4-DRGSTIM. Seven genes including TLR1, FFAR2, IL1RAP, ILRN, C5, PKB and IL18 were down regulated and fourteen genes including CXCL2, CCL11, IL36G, CRP, SCGB1A1, IL-17F, TNFRSF4, PLA2G2A, CREB3L3, ADAMTS12, IL1F10, NOX1, CHIA and BDKRB1 were upregulated. CONCLUSIONS: In our sub-group analysis of L4-DRGSTIM treated CRPS patients, we found either upregulated or downregulated genes involved in immunoinflammatory circuits relevant for the pathophysiology of CRPS indicating a possible relation. However, large biobank-based approaches are recommended to establish genetic phenotyping as a quantitative outcome measure in CRPS patients. Trial registration The study protocol was registered at the 15.11.2016 on German Register for Clinical Trials (DRKS ID 00011267). https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00011267.


Subject(s)
Chronic Pain/therapy , Complex Regional Pain Syndromes/therapy , Inflammation/blood , Inflammation/genetics , Neuralgia/therapy , Pain Management/methods , Transcutaneous Electric Nerve Stimulation/methods , Aged , Biomarkers/blood , Biomarkers/metabolism , Chronic Pain/blood , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/genetics , Complex Regional Pain Syndromes/metabolism , Cytokines/blood , Cytokines/genetics , Female , Ganglia, Spinal/physiology , Gene Expression Profiling , Humans , Inflammation/etiology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Knee/pathology , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Neuralgia/blood , Pain, Postoperative/blood , Pain, Postoperative/etiology , Pain, Postoperative/therapy , Saliva/chemistry , Saliva/metabolism
16.
J Clin Invest ; 128(10): 4313-4328, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30179222

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.


Subject(s)
Nephrotic Syndrome/metabolism , Nuclear Pore Complex Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Nuclear Pore Complex Proteins/genetics , Xenopus Proteins/genetics , Xenopus laevis , Zebrafish , Zebrafish Proteins/genetics
17.
Ann Neurol ; 82(4): 562-577, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28892560

ABSTRACT

OBJECTIVE: Autosomal recessive primary microcephaly (MCPH) is a rare condition characterized by a reduced cerebral cortex accompanied with intellectual disability. Mutations in 17 genes have been shown to cause this phenotype. Recently, mutations in CIT, encoding CRIK (citron rho-interacting kinase)-a component of the central spindle matrix-were added. We aimed at identifying novel MCPH-associated genes and exploring their functional role in pathogenesis. METHODS: Linkage analysis and whole exome sequencing were performed in consanguineous and nonconsanguineous MCPH families to identify disease-causing variants. Functional consequences were investigated by RNA studies and on the cellular level using immunofluorescence and microscopy. RESULTS: We identified homozygous mutations in KIF14 (NM_014875.2;c.263T>A;pLeu88*, c.2480_2482delTTG; p.Val827del, and c.4071G>A;p.Gln1357=) as the likely cause in 3 MCPH families. Furthermore, in a patient presenting with a severe form of primary microcephaly and short stature, we identified compound heterozygous missense mutations in KIF14 (NM_014875.2;c.2545C>G;p.His849Asp and c.3662G>T;p.Gly1221Val). Three of the 5 identified mutations impaired splicing, and 2 resulted in a truncated protein. Intriguingly, Kif14 knockout mice also showed primary microcephaly. Human kinesin-like protein KIF14, a microtubule motor protein, localizes at the midbody to finalize cytokinesis by interacting with CRIK. We found impaired localization of both KIF14 and CRIK at the midbody in patient-derived fibroblasts. Furthermore, we observed a large number of binucleated and apoptotic cells-signs of failed cytokinesis that we also observed in experimentally KIF14-depleted cells. INTERPRETATION: Our data corroborate the role of an impaired cytokinesis in the etiology of primary and syndromic microcephaly, as has been proposed by recent findings on CIT mutations. Ann Neurol 2017;82:562-577.


Subject(s)
Cytokinesis/genetics , Gene Expression Regulation/genetics , Kinesins/genetics , Microcephaly/genetics , Mutation/genetics , Oncogene Proteins/genetics , Caspase 7/metabolism , Cell Movement/genetics , Cells, Cultured , Child , Child, Preschool , Family Health , Female , Fibroblasts/physiology , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Microcephaly/diagnostic imaging , Microcephaly/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tubulin/metabolism
18.
Mol Genet Genomics ; 292(2): 365-383, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28004182

ABSTRACT

Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in brain size but with normal architecture. It is often linked to mutations in genes coding for centrosomal proteins; however, their role in brain size regulation is not completely understood. By combining homozygosity mapping and whole-exome sequencing in an MCPH family from Pakistan, we identified a novel mutation (XM_011518861.1; c.4114C > T) in CDK5RAP2, the gene associated with primary microcephaly-3 (MCPH3), leading to a premature stop codon (p.Arg1372*). CDK5RAP2 is a component of the pericentriolar material important for the microtubule-organizing function of the centrosome. Patient-derived primary fibroblasts had strongly decreased CDK5RAP2 amounts, showed centrosomal and nuclear abnormalities and exhibited changes in cell size and migration. We further identified an interaction of CDK5RAP2 with the Hippo pathway components MST1 kinase and the transcriptional regulator TAZ. This finding potentially provides a mechanism through which the Hippo pathway with its roles in the regulation of centrosome number is linked to the centrosome. In the patient fibroblasts, we observed higher levels of TAZ and YAP. However, common target genes of the Hippo pathway were downregulated as compared to the control with the exception of BIRC5 (Survivin), which was significantly upregulated. We propose that the centrosomal deficiencies and the altered cellular properties in the patient fibroblasts can also result from the observed changes in the Hippo pathway components which could thus be relevant for MCPH and play a role in brain size regulation and development.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Microcephaly/genetics , Microcephaly/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction , Acyltransferases , Adaptor Proteins, Signal Transducing/metabolism , Brain/physiology , Cell Cycle Proteins , Cell Movement , Cell Size , Cells, Cultured , Centrosome/ultrastructure , Codon, Nonsense , DNA/genetics , Fibroblasts/metabolism , Genetic Linkage , Genetic Predisposition to Disease , Genome, Human , HEK293 Cells , HeLa Cells , Hepatocyte Growth Factor/metabolism , Homozygote , Humans , Mutation , Organ Size , Pedigree , Phosphoproteins/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins
19.
Hum Genet ; 135(2): 157-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621532

ABSTRACT

Primary microcephaly is a disorder characterized by a small head and brain associated with impaired cognitive capabilities. Mutations in 13 different genes encoding centrosomal proteins and cell cycle regulators have been reported to cause the disease. CASC5, a gene encoding a protein important for kinetochore formation and proper chromosome segregation during mitosis, has been suggested to be associated with primary microcephaly-4 (MCPH4). This was based on one mutation only and circumstantial functional evidence. By combining homozygosity mapping and whole-exome sequencing in an MCPH family from Pakistan, we identified a second mutation (NM_170589.4;c.6673-19T>A) in CASC5. This mutation induced skipping of exon 25 of CASC5 resulting in a frameshift and the introduction of a premature stop codon (p.Met2225Ilefs*7). The C-terminally truncated protein lacks 118 amino acids that encompass the region responsible for the interaction with the hMIS12 complex, which is essential for proper chromosome alignment and segregation. Furthermore, we showed a down-regulation of CASC5 mRNA and reduction of the amount of CASC5 protein by quantitative RT-PCR and western blot analysis, respectively. As a further sign of functional deficits, we observed dispersed dots of CASC5 immunoreactive material outside the metaphase plate of dividing patient fibroblasts. Normally, CASC5 is a component of the kinetochore of metaphase chromosomes. A higher mitotic index in patient cells indicated a mitotic arrest in the cells carrying the mutation. We also observed lobulated and fragmented nuclei as well as micronuclei in the patient cells. Moreover, we detected an altered DNA damage response with higher levels of γH2AX and 53BP1 in mutant as compared to control fibroblasts. Our findings substantiate the proposed role of CASC5 for primary microcephaly and suggest that it also might be relevant for genome stability.


Subject(s)
Asian People/genetics , Homozygote , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , RNA Splicing , Amino Acid Sequence , Cells, Cultured , Chromosome Segregation , Codon, Nonsense/genetics , Codon, Nonsense/metabolism , DNA Damage/genetics , Down-Regulation , Exons , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Frameshift Mutation , Genetic Linkage , Genetic Loci , Genome-Wide Association Study , Humans , Kinetochores/metabolism , Male , Microtubule-Associated Proteins/metabolism , Mitosis , Molecular Sequence Data , Pakistan , Pedigree , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
20.
Am J Hum Genet ; 95(5): 622-32, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25439729

ABSTRACT

Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs(∗)6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome.


Subject(s)
Cytoskeletal Proteins/genetics , Growth Disorders/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Syndactyly/genetics , Animals , Base Sequence , Cytogenetic Analysis , Facies , Frameshift Mutation/genetics , Gene Components , Genes, Recessive/genetics , Growth Disorders/pathology , Humans , Intellectual Disability/pathology , Italy , Male , Mice , Microcephaly/pathology , Microscopy, Confocal , Molecular Sequence Data , Sequence Analysis, DNA , Syndactyly/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...