Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(4): e06739, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869882

ABSTRACT

This study investigates the interactive effects of processing parameters on the quality of milled rice using a one-step milling machine. Also, predictive models were generated using response surface methodology. The processing parameters were moisture content (10-14 % dry basis), shaft speed of rotation (600-900 rpm), and polishing time (1-3 min). The quality parameters evaluated were milling (head rice yield, percentage broken rice, fine broken rice, and milled rice yield), cooking (optimum cooking time, kernel elongation ratio, and width expansion ratio), and sensory (flavor, aroma, appearance, texture, and overall acceptability) properties. The results showed that the interactive effects of moisture content, shaft speed, and polishing time were significant (P < 0.05) on percentage broken rice, milled rice yield, fine broken rice, optimum cooking time, kernel elongation ratio, width expansion ratio, aroma, and appearance but was not significant on head rice yield, flavor, texture, and overall acceptability. These results were similar to the regression models generated. In conclusion, the interactive effects of these processing parameters affect all the cooking properties but not all milling and sensory properties while using a one-step milling machine.

3.
IET Nanobiotechnol ; 12(4): 405-411, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29768221

ABSTRACT

Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.


Subject(s)
Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts/metabolism , Solanum lycopersicum/drug effects , Zinc Oxide/pharmacology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Particle Size , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Zinc Oxide/chemistry , Zinc Oxide/metabolism
4.
Nanomedicine (Lond) ; 13(1): 25-41, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29173059

ABSTRACT

AIM: Our aim was to inhibit trypanothione reductase (TR) and P-gp efflux pump of Leishmania by the use of thiolated polymers. Thus, increasing the intracellular accumulation and therapeutic effectiveness of antimonial compounds. METHODS: Mannosylated thiolated chitosan and mannosylated thiolated chitosan-polyethyleneimine graft were synthesized and characterized. Meglumine antimoniate-loaded nanoparticles were prepared and evaluated for TR and P-gp efflux pump inhibition, biocompatibility, macrophage uptake and antileishmanial potential. RESULTS: Thiomers inhibited TR with Ki 2.021. The macrophage uptake was 33.7- and 18.9-fold higher with mannosylated thiolated chitosan-polyethyleneimine graft and mannosylated thiolated chitosan nanoparticles, respectively, as compared with the glucantime. Moreover, the in vitro antileishmanial activity showed 14.41- and 7.4-fold improved IC50 for M-TCS-g-PEI and M-TCS, respectively as compared with glucantime. CONCLUSION: These results encouraged the concept that TR and P-gp inhibition by the use of thiomers improves the therapeutic efficacy of antimonial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Leishmaniasis/drug therapy , Meglumine/pharmacology , Nanoparticles/chemistry , Organometallic Compounds/pharmacology , Polyethyleneimine/analogs & derivatives , Antiprotozoal Agents/chemistry , Biological Transport , Chitosan/chemical synthesis , Drug Liberation , Humans , Leishmania/drug effects , Mannose/chemistry , Meglumine/chemistry , Meglumine Antimoniate , Organometallic Compounds/chemistry , Particle Size , Polyethyleneimine/chemical synthesis , Sulfhydryl Compounds/chemistry , Surface Properties
5.
Front Plant Sci ; 7: 1330, 2016.
Article in English | MEDLINE | ID: mdl-27630655

ABSTRACT

In this study, we have investigated the effect of copper oxide nanoparticles (CuO-NPs) on callogenesis and regeneration of Oryza sativa L (Super Basmati, Basmati 2000, Basmati 370, and Basmati 385). In this regard, CuO-NPs have been bio-synthesized via Azadirachta indica leaf extract. Scanning electron microscope (SEM) analysis depicts average particle size of 40 ± 5 nm with highly homogenous and spherical morphology. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been employed to confirm the phase purity of the synthesized NPs. It is found that CuO-NPs exhibit very promising results against callus induction. It is attributed to the fact that green synthesized CuO-NPs at optimum dosage possess very supportive effects on plant growth parameters. In contrast to callogenesis, differential regeneration pattern has been observed against all of the examined O. sativa L. indigenous verities. Overall observation concludes that CuO, being one of the essential plant nutrients, has greatly tailored the nutritive properties at nano-scale.

6.
AMB Express ; 6(1): 54, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27491862

ABSTRACT

Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

7.
Chemosphere ; 159: 32-43, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27268792

ABSTRACT

Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).


Subject(s)
Cadmium/toxicity , Pichia/drug effects , Pichia/metabolism , Water Pollutants, Chemical/toxicity , Water Purification/methods , Adsorption , Biodegradation, Environmental , Biomass , Cadmium/metabolism , Hydrogen-Ion Concentration , Industrial Waste , Kinetics , Temperature , Wastewater , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...