Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39032854

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.


Subject(s)
DNA Repair , Glucagon-Like Peptides , Animals , Male , Glucagon-Like Peptides/pharmacology , DNA Repair/drug effects , Mice , Disease Models, Animal , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Gene Expression/drug effects , Hypoglycemic Agents/pharmacology , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Autistic Disorder/metabolism , Behavior, Animal/drug effects
2.
Reprod Toxicol ; 126: 108599, 2024 06.
Article in English | MEDLINE | ID: mdl-38679149

ABSTRACT

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Subject(s)
Aflatoxin B1 , Autism Spectrum Disorder , Brain , Disease Models, Animal , Spleen , Animals , Autism Spectrum Disorder/chemically induced , Aflatoxin B1/toxicity , Brain/metabolism , Brain/drug effects , Spleen/drug effects , Spleen/metabolism , Male , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Mice , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
3.
Brain Sci ; 13(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38002479

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-ß1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-ß1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.

4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108638

ABSTRACT

Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.


Subject(s)
Autism Spectrum Disorder , Humans , Child , Child, Preschool , Interleukin-17/metabolism , Up-Regulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Receptors, Chemokine/metabolism , Transcription Factors/metabolism , CD40 Antigens/genetics , CD40 Antigens/metabolism , RNA, Messenger/metabolism
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047547

ABSTRACT

Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.


Subject(s)
Autism Spectrum Disorder , Interleukin-17 , Mice , Animals , Interleukin-17/metabolism , Cadmium/toxicity , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tumor Necrosis Factor-alpha/genetics , Mice, Inbred C57BL , Mice, Inbred Strains , Autism Spectrum Disorder/metabolism , RNA, Messenger/metabolism , Disease Models, Animal
6.
J Neuroimmunol ; 377: 578069, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36931207

ABSTRACT

Autism comprises a broad range of neurodevelopmental disorders characterized by social communication deficits and repetitive and stereotyped behaviors. Chemokine receptor CXCR2 is expressed on neurons and is upregulated in neurological disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD. Here, we studied the anti-inflammatory effect of a potent and selective CXCR2 antagonist SB332235 in the BTBR mice. The CXCR2 antagonist represents a promising therapeutic agent for several neuroinflammatory disorders. In this study, we investigated the effects of SB332235 administration on NF-κB-, Notch-1-, Notch-3-, GM-CSF-, MCP-1-, IL-6-, and IL-2- and TGF-ß1-expressing CD40+ cells in BTBR and C57BL/6 (C57) mice in the spleen cells by flow cytometry. We further assessed the effect of SB332235 treatment on NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2 mRNA expression levels in the brain tissue by RT-PCR. We also explored the effect of SB332235 administration on NF-κB, GM-CSF, IL-6, and TGF-ß1 protein expression levels in the brain tissue by western blotting. The SB332235-treated BTBR mice significantly decreases in CD40 + NF-κB+, CD40 + Notch-1+, CD40 + Notch-3+, CD40 + GM-CSF+, CD40 + MCP-1+, CD40 + IL-6+, and CD40 + IL-2+, and increases in CD40 + TGF-ß1+ in the spleen cells. Our results further demonstrated that BTBR mice treated with SB332235 effectively decreased NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2, increasing TGF-ß1 mRNA and protein expression levels in the brain tissue. In conclusion, these results indicate that SB332235 elicits an anti-inflammatory response by downregulating the inflammatory mediators and NF-κB/Notch inflammatory signaling in BTBR mice. This could represent a promising novel therapeutic target for autism treatment.


Subject(s)
Autistic Disorder , Mice , Animals , Autistic Disorder/drug therapy , NF-kappa B/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Transforming Growth Factor beta1 , Interleukin-2 , Interleukin-6 , Mice, Inbred C57BL , Mice, Inbred Strains , RNA, Messenger , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal
7.
Toxicology ; 477: 153277, 2022 07.
Article in English | MEDLINE | ID: mdl-35914580

ABSTRACT

Environmental and genetic factors have been recognized to play major roles in the pathogenesis of autism. Here we examined the BTBR T+Itpr3tf/J (BTBR) mice's susceptibility, an autistic model, to the genotoxic effects and DNA repair dysregulation of methylmercury. Micronuclei formation and oxidative DNA damage were analyzed using the micronucleus/fluorescence in situ hybridization test and modified comet assay, respectively. The results showed higher centromeric-positive micronuclei and oxidative DNA damage in BTBR mice exposed to methylmercury than the unexposed mice, which indicates that mutagenesis aggravated in BTBR mice after methylmercury exposure. Lipid peroxides in BTBR mice were significantly elevated, with a decrease in reduced/oxidized glutathione ratio after methylmercury exposure, indicating an augmenting oxidant-antioxidant imbalance. The expression of several genes involved in DNA repair was markedly altered in BTBR mice after methylmercury exposure as evaluated via PCR array and RT-PCR analyses. Declining of the antioxidant defense and dysregulation in DNA repair process after methylmercury exposure may explain the aggravated genotoxic susceptibility of BTBR mice. Thus, autistic individuals exposed to methylmercury must be under regular medical follow-up through standard timetabled medical laboratory inquiry to allow for early recognition of any mutagenic changes. Additionally, strategies that elevate cellular antioxidants/DNA repair efficiency may counteract methylmercury-induced genotoxicity.


Subject(s)
Autistic Disorder , Methylmercury Compounds , Animals , Antioxidants , Autistic Disorder/chemically induced , Autistic Disorder/genetics , DNA Damage , DNA Repair , Disease Models, Animal , In Situ Hybridization, Fluorescence , Methylmercury Compounds/toxicity , Mice , Mice, Inbred C57BL , Mice, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL