Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Placenta ; 138: 75-82, 2023 07.
Article in English | MEDLINE | ID: mdl-37216796

ABSTRACT

INTRODUCTION: Traffic-related air pollution (TRAP), a common exposure, potentially impacts pregnancy through altered placental function. We investigated associations between prenatal TRAP exposure and placental gene expression. METHODS: Whole transcriptome sequencing was performed on placental samples from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle and Yakima, WA) (n = 205), cohorts of the ECHO-PATHWAYS Consortium. Residential NO2 exposures were computed via spatiotemporal models for full-pregnancy, each trimester, and the first/last months of pregnancy. Individual cohort-specific, covariate-adjusted linear models were fit for 10,855 genes and respective exposures (NO2 or roadway proximity [≤150 m]). Infant-sex/exposure interactions on placental gene expression were tested with interaction terms in separate models. Significance was based on false discovery rate (FDR<0.10). RESULTS: In GAPPS, final-month NO2 exposure was positively associated with MAP1LC3C expression (FDR p-value = 0.094). Infant-sex interacted with second-trimester NO2 on STRIP2 expression (FDR interaction p-value = 0.011, inverse and positive associations among male and female infants, respectively) and roadway proximity on CEBPA expression (FDR interaction p-value = 0.045, inverse among females). In CANDLE, infant-sex interacted with first-trimester and full-pregnancy NO2 on RASSF7 expression (FDR interaction p-values = 0.067 and 0.013, respectively, positive among male infants and inverse among female infants). DISCUSSION: Overall, pregnancy NO2 exposure and placental gene expression associations were primarily null, with exception of final month NO2 exposure and placental MAP1LC3C association. We found several interactions of infant sex and TRAP exposures on placental expression of STRIP2, CEBPA, and RASSF7. These highlighted genes suggest influence of TRAP on placental cell proliferation, autophagy, and growth, though additional replication and functional studies are required for validation.


Subject(s)
Air Pollutants , Prenatal Exposure Delayed Effects , Humans , Male , Female , Pregnancy , Placenta/chemistry , Air Pollutants/toxicity , Nitrogen Dioxide/analysis , Prenatal Exposure Delayed Effects/genetics , Maternal Exposure/adverse effects , Gene Expression
2.
J Matern Fetal Neonatal Med ; 35(25): 8594-8602, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34666587

ABSTRACT

BACKGROUND: Maternal cadmium (Cd) burden has been associated with offspring birth size measures, yet associations of placental Cd with birth size are less clear. Further, the role of genetics in these associations has not been examined. We investigated associations of placental Cd with birth size and placental genotypes. We also examined the potential role of placental genotypes as modifiers of placental Cd and birth size associations. METHODS: Participants were 490 mother-child pairs from the Omega and Placenta Microarray studies based in Seattle, WA. Placental Cd was measured using Agilent 7500 ICP-MS. The birth size was characterized using birth weight (BW), ponderal index (PI), and head circumference (HC). Eleven placental single nucleotide polymorphisms (SNPs) related to metal transport, growth regulation, endocrine response, and cell signaling were genotyped. Adjusted multivariable linear regression models were used to examine overall and sex-specific associations of placental Cd with birth size (BW, PI and HC), as well as associations of placental genotypes with placental Cd. Effect modification of placenta Cd and birth size associations by placental SNPs was examined using interaction terms and stratified analyses. RESULTS: Mean maternal age was 33.6 years (SD = 4.4). Mean and median placental Cd levels were 4.0 ng/g tissue (SD = 2.7 ng/g tissue) and 3.6 ng/g (IQR 2.5 - 5.2 ng/g), respectively. Overall, compared with infants in the lowest quartile for placental Cd, infants in the second (ß = -102.8 g, 95% CI: -220.7, 15.1), third (ß = -83.2 g, 95% CI: -199.3, 32.9) and fourth (ß = -109.2 g, 95% CI: -225.4, 7.1) quartiles had lower BW, though associations were not statistically significant (all p-values > .05, trend p-value = .11). Among male infants, infants in the second (ß = -203.3 g, 95% CI: -379.7, -27.0) and fourth quartiles (ß = -198.3 g, 95% CI: -364.2, -32.5) had lower BW compared with those in the first quartiles (p-values < .05, trend p-value = .08). Similar relationships were not observed among female infants, though infant sex-placental Cd interaction terms were not significant. Similarly, male, but not female, infants had marginally significant positive associations between placental Cd and ponderal index (trend p-value = .06). The minor rs3811647 allele of the placental transferrin gene (NCBI Gene ID: 7018) was associated with an increase in Cd among all infants (p-value = .04). We did not find differences in associations of placental Cd with birth size markers among infants stratified by rs3811647 genotype. CONCLUSIONS: Placental Cd was inversely associated with BW among male infants. The rs3811647 SNP of the transferrin gene was associated with placental Cd.


Subject(s)
Cadmium , Placenta , Infant , Pregnancy , Male , Female , Humans , Adult , Birth Weight/genetics , Polymorphism, Single Nucleotide , Transferrins , Maternal Exposure
3.
Environ Epigenet ; 6(1): dvaa003, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32411397

ABSTRACT

Heavy metal exposures, such as cadmium, can have negative effects on infant birth weight (BW)-among other developmental outcomes-with placental dysfunction potentially playing a role in these effects. In this study, we examined how differential placental expression of long non-coding RNAs (lncRNAs) may be associated with cadmium levels in placenta and whether differences in the expression of those lncRNAs were associated with fetal growth. In the Rhode Island Child Health Study, we used data from Illumina HiSeq whole transcriptome RNA sequencing (n = 199) to examine association between lncRNA expression and measures of infant BW as well as placental cadmium concentrations controlled for appropriate covariates. Of the 1191 lncRNAs sequenced, 46 demonstrated associations (q < 0.05) with BW in models controlling for infant sex, maternal age, BMI, maternal education, and smoking during pregnancy. Furthermore, four of these transcripts were associated with placental cadmium concentrations, with MIR22HG and ERVH48-1 demonstrating increases in expression associated with increasing cadmium exposure and elevated odds of small for gestational age birth, while AC114763.2 and LINC02595 demonstrated reduced expression associated with cadmium, but elevated odds of large for gestational age birth with increasing expression. We identified relationships between lncRNA expression with both placental cadmium concentrations and BW. This study provides evidence that disrupted placental expression of lncRNAs may be a part of cadmium's mechanisms of reproductive toxicity.

4.
J Cell Sci ; 132(20)2019 10 18.
Article in English | MEDLINE | ID: mdl-31548202

ABSTRACT

Mispositioned nuclei are a hallmark of skeletal muscle disease. Many of the genes that are linked to Emery-Dreifuss muscular dystrophy (EDMD) encode proteins that are critical for nuclear movement in various cells, suggesting that disruptions in nuclear movement and position may contribute to disease progression. However, how these genes are coordinated to move nuclei is not known. Here, we focussed on two different emerin proteins in Drosophila, Bocksbeutel and Otefin, and their effects on nuclear movement. Although nuclear position was dependent on both, elimination of either Bocksbeutel or Otefin produced distinct phenotypes that were based in differential effects on the KASH-domain protein Klarsicht. Specifically, loss of Bocksbeutel reduced Klarsicht localization to the nucleus and resulted in a disruption in nuclear separation. Loss of Otefin increased the transcription of Klarsicht and led to premature separation of nuclei and their positioning closer to the edge of the muscle. Consistent with opposing functions, nuclear position is normal in otefin; bocksbeutel double mutants. These data indicate emerin-dependent regulation of Klarsicht levels in the nuclear envelope is a critical determinant of nuclear position.


Subject(s)
Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Muscles/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Nuclear Envelope/genetics , Nuclear Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...