Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e2231, 2024.
Article in English | MEDLINE | ID: mdl-39145209

ABSTRACT

In the modern digital market flooded by nearly endless cyber-security hazards, sophisticated IDS (intrusion detection systems) can become invaluable in defending against intricate security threats. Sybil-Free Metric-based routing protocol for low power and lossy network (RPL) Trustworthiness Scheme (SF-MRTS) captures the nature of the biggest threat to the routing protocol for low-power and lossy networks under the RPL module, known as the Sybil attack. Sybil attacks build a significant security challenge for RPL networks where an attacker can distort at least two hop paths and disrupt network processes. Using such a new way of calculating node reliability, we introduce a cutting-edge approach, evaluating parameters beyond routing metrics like energy conservation and actuality. SF-MRTS works precisely towards achieving a trusted network by introducing such trust metrics on secure paths. Therefore, this may be considered more likely to withstand the attacks because of these security improvements. The simulation function of SF-MRTS clearly shows its concordance with the security risk management features, which are also necessary for the network's performance and stability maintenance. These mechanisms are based on the principles of game theory, and they allocate attractions to the nodes that cooperate while imposing penalties on the nodes that do not. This will be the way to avoid damage to the network, and it will lead to collaboration between the nodes. SF-MRTS is a security technology for emerging industrial Internet of Things (IoT) network attacks. It effectively guaranteed reliability and improved the networks' resilience in different scenarios.

2.
PeerJ Comput Sci ; 7: e747, 2021.
Article in English | MEDLINE | ID: mdl-34805503

ABSTRACT

BACKGROUND: Recent technological developments have enabled the execution of more scientific solutions on cloud platforms. Cloud-based scientific workflows are subject to various risks, such as security breaches and unauthorized access to resources. By attacking side channels or virtual machines, attackers may destroy servers, causing interruption and delay or incorrect output. Although cloud-based scientific workflows are often used for vital computational-intensive tasks, their failure can come at a great cost. METHODOLOGY: To increase workflow reliability, we propose the Fault and Intrusion-tolerant Workflow Scheduling algorithm (FITSW). The proposed workflow system uses task executors consisting of many virtual machines to carry out workflow tasks. FITSW duplicates each sub-task three times, uses an intermediate data decision-making mechanism, and then employs a deadline partitioning method to determine sub-deadlines for each sub-task. This way, dynamism is achieved in task scheduling using the resource flow. The proposed technique generates or recycles task executors, keeps the workflow clean, and improves efficiency. Experiments were conducted on WorkflowSim to evaluate the effectiveness of FITSW using metrics such as task completion rate, success rate and completion time. RESULTS: The results show that FITSW not only raises the success rate by about 12%, it also improves the task completion rate by 6.2% and minimizes the completion time by about 15.6% in comparison with intrusion tolerant scientific workflow ITSW system.

SELECTION OF CITATIONS
SEARCH DETAIL