Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18168, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307504

ABSTRACT

SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression. The expression of ACE2 and TMPRSS2 was higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48+ secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the gene expression data confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose, these genes are not predominantly expressed in cell populations modulated by smoking. In individuals with elevated lung cancer risk, smoking-induced VE gene expression changes in the nose likely have minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Early Detection of Cancer , Peptidyl-Dipeptidase A/metabolism , Lung Neoplasms/metabolism , Bronchi/metabolism , Smoking/adverse effects , Smoking/genetics
2.
Cancers (Basel) ; 14(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35740559

ABSTRACT

The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents.

3.
Res Sq ; 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34729557

ABSTRACT

Background : SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments has not been fully characterized using matched samples from large cohorts. Results : Gene expression data from 793 nasal and 1,673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking was the only clinical factor significantly and reproducibly associated with VE gene expression. ACE2 and TMPRSS2 expression were higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48 + secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the RNA-seq confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. Conclusions : The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose these genes are not predominantly expressed in cell populations modulated by smoking. Smoking-induced VE gene expression changes in the nose likely has minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.

4.
Transl Psychiatry ; 11(1): 504, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34601489

ABSTRACT

Transcriptomic changes in specific brain regions can influence the risk of alcohol use disorder (AUD), but the underlying mechanism is not fully understood. We investigated AUD-associated miRNA-mRNA regulatory networks in multiple brain regions by analyzing transcriptomic changes in two sets of postmortem brain tissue samples and ethanol-exposed human embryonic stem cell (hESC)-derived cortical interneurons. miRNA and mRNA transcriptomes were profiled in 192 tissue samples (Set 1) from eight brain regions (amygdala, caudate nucleus, cerebellum, hippocampus, nucleus accumbens, prefrontal cortex, putamen, and ventral tegmental area) of 12 AUD and 12 control European Australians. Nineteen differentially expressed miRNAs (fold-change>2.0 & P < 0.05) and 97 differentially expressed mRNAs (fold-change>2.0 & P < 0.001) were identified in one or multiple brain regions of AUD subjects. AUD-associated miRNA-mRNA regulatory networks in each brain region were constructed using differentially expressed and negatively correlated miRNA-mRNA pairs. AUD-relevant pathways (including CREB Signaling, IL-8 Signaling, and Axonal Guidance Signaling) were potentially regulated by AUD-associated brain miRNA-mRNA pairs. Moreover, miRNA and mRNA transcriptomes were mapped in additional 96 tissue samples (Set 2) from six of the above eight brain regions of eight AUD and eight control European Australians. Some of the AUD-associated miRNA-mRNA regulatory networks were confirmed. In addition, miRNA and mRNA transcriptomes were analyzed in hESC-derived cortical interneurons with or without ethanol exposure, and ethanol-influenced miRNA-mRNA regulatory networks were constructed. This study provided evidence that alcohol could induce concerted miRNA and mRNA expression changes in reward-related or alcohol-responsive brain regions. We concluded that altered brain miRNA-mRNA regulatory networks might contribute to AUD development.


Subject(s)
Alcoholism , MicroRNAs , Australia , Brain , Gene Regulatory Networks , Humans , MicroRNAs/genetics , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...